• 제목/요약/키워드: Galvanic corrosion potential

검색결과 79건 처리시간 0.027초

Marmatite 鑛의 直接酸浸出에 關한 硏究 (第3報) Marmatite 鑛의 酸浸出과 黃化物의 電極電位에 關한 硏究 (Direct Acid Leaching of Zinc from Marmatite Ores 3 Acid Leaching of Marmatite Ores and the Electrode Potential Behavior of Sulfides)

  • 김재원
    • 대한화학회지
    • /
    • 제11권1호
    • /
    • pp.38-43
    • /
    • 1967
  • In order to explain the positive catalytic action of copper compound for the rate of leaching of zinc sulfide minerals, the electrode and redox potentials of both synthetic and natural sulfides were measured at various conditions of temperatures and pressures. The potentials of Chalcopyrite and copper sulfide were considerably higher than that of zinc sulfide, whereas lead sulfide and Galena had slightly lower potentials than that of zinc sulfide. At elevated temperatures and pressures, the same tendency was obtained. By means of comparing the calculated and measured values of potentials for sulfides, it was suggested that the electrode potentials in acid solution were generated by oxidation of sulfur ion. As a result, it was concluded that the catalytic action of copper compound in the leaching of synthetic zinc sulfide should be arised from the galvanic action between sulfides keeping intimate contact one another in which copper sulfide worked as cathodic and zinc sulfide as anodic part analogous to the metal corrosion under galvanic action.

  • PDF

인공해수 건습반복조건에 따른 콘크리트배합별 부식촉진시험법과 염화물 침투해석평가 (Evaluate the Concrete mix by Type Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Cyclic Wet and Dry Condition)

  • 박상순;김민욱
    • 한국건설순환자원학회논문집
    • /
    • 제1권3호
    • /
    • pp.211-218
    • /
    • 2013
  • 해양환경 조건 중 건습반복환경인 간만대는 구조물내 철근부식이 가장 빨리 일어나는 것으로 알려져 있다. 때문에 부식촉진시험 방법 중 간만대 환경을 재현한 시험방법이 가장 활발하게 진행되어왔다. 그러나 많은 연구들이 부식임계농도 추정이나 염화물침투해석에 집중되어 있는 상황이다. 본 논문에서는 건습반복조건의 환경을 재현하여 구조물내 철근부식촉진시험과 염화물 침투해석을 실시하였다. 배합에 사용된 재료의 종류를 변수로 시험을 실시하였으며, 철근부식모니터링 방법으로 갈바닉 전위측정법과 반전지전위법을 사용하여 철근부식의 유무를 판단하였다. 부식촉진시험결과 각 배합별로 부식기간이 차이가 났으며, 순서는 OPC > FA > BS > 고강도 순으로 나타났다. 부식촉진시험과 동일한 조건으로 FEM 내구성 해석 프로그램인 DuCOM, RCPT 시험을 실시하여 실험결과 값에 대한 타당성을 입증하였다.

인공해수 침지조건에 따른 부식촉진시험과 염화물침투해석에 대한 연구 (A Study of Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Immersion Condition)

  • 박상순;정지원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.93-100
    • /
    • 2014
  • 해수중 환경에서 콘크리트 구조물 내에 매립된 철근은 용존산소의 부족으로 부식이 잘 발생하지 않는다. 이 때문에 해수중 환경의 부식촉진시험은 전기화학적인 방법으로 실시되어, 실제 부식 메커니즘과 맞지 않고 장기거동과의 상관성 도출도 어려운 실정이다. 본 연구에서는 해수중 환경에서의 부식촉진시험법을 정립하기 위해 온도와 염화물농도를 주된 변수로 부식촉진시험을 실시하였다. 부식의 발생 유무는 갈바닉 전위측정법과 반전지전위법을 통한 철근부식모니터링 결과로 판단하였다. 부식촉진시험 결과 온도의 영향이 가장 지배적이라고 평가되었다. 염화물량은 시험 시편의 깊이별 염화물 농도를 측정하였다. 동일한 조건으로 FEM 내구성 해석 프로그램인 DuCOM을 통해 염화물침투 해석을 실시하여 입증하였다. 또한, 인공해수 침지 조건에 따른 용존 산소량은 실험을 통해 구했으며 이를 통해 부식촉진시험 결과의 타당성을 검증하였다.

부식 저항성 평가에 따른 균열 콘크리트 보의 부식전위 연구 (A Study on Corrosion Potential of Cracked Concrete Beam According to Corrosion Resistance Assessment)

  • 송하원;이창홍;이근주
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권1호통권53호
    • /
    • pp.97-105
    • /
    • 2009
  • 건설산업에서 혼합콘크리트의 개발 및 사용은 내구성 측면에서의 공극구조개선 및 투수성 감소등의 확장 연구를 통해 나날이 증가하고 있는 실정이다. 한편, 콘크리트내의 균열은 투수성, 염해 침투속도 및 압축강도등을 결정하는 중요한 인자이며, 이는 철근의 부식과도 밀접한 관련을 가지는 것으로 알려져 있다. 더욱이 콘크리트 구조물의 피복두께에 균열이 발생한 경우, 이를 통해 철근 부식이 가속화됨은 주지의 사실이다. 최근에 콘크리트내의 침투를 고려한 균열효과와 관련하여 다수의 연구가 수행되어져 온 것이 사실이며, 그에 따라 내구성을 고려한 균열 혼합콘크리트의 사용수명 평가에 관한 연구도 필요한 것이 사실이다. 본 연구에서는 0.3mm의 균열을 변수로 두고, OPC, 30% PFA, 60% GGBS 및 10% SF의 결합재를 혼입하여 사용한 혼합콘크리트보의 부식평가를 자연 및 인공 환경조건에 맞추어 반전지전위측정시험, 갈바닉전류측정시험, 무게감량법등으로 측정 및 비교분석하였다.

수중 용접봉으로 용접한 누수배관 용접부위의 부식 특성 평가 (Evaluation of Corrosion Characteristics on Welding Zone of Leakage SeawaterPipe Welded by Underwater Welding Electrode)

  • 문경만;이성열;김윤해;이명훈;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1240-1247
    • /
    • 2008
  • Leakage trouble on the sea water pipeline in engine room is often resulted from a localized corrosion due to severe corrosive environment caused by both high speed and high pressure of sea water flowing through the inner pipe. In addition, when the ship is in stand-by or emergency condition, underwater welding to control the leakage of sea water from a hole of its pipe is very important in an industrial safety point of view. In this study possibility of underwater welding to control leakage of sea water and corrosion property of its welding zone were investigated with the electrochemical methods by parameters of welding methods and welding electrodes when underwater welding is achieved with a such case that sea water is being leaked out with a height at 50mm from a hole of $2.5mm{\emptyset}$ of test pipe. Corrosion resistance of weld metal zone is better than the base metal and its hardness is higher than that of the base metal. However corrosion potential of weld metal zone showed a negative value than that of the base metal, therefore weld metal zone is preferentially corroded rather than the base metal by performance of galvanic cell due to difference of corrosion potential between weld metal zone and base metal. Eventually it is suggested that leakage of sea water is successfully controlled by underwater welding,

플라즈마 스프레이방법을 이용하여 Ti 언더코트를 제작한 SUS316L강의 부식피로 특성 (Corrosion Fatigue Characteristics of SUS316L Steel with Ti Undercoat using Plasma Spray Method)

  • 한창석;김우석
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.172-180
    • /
    • 2021
  • In this study, using the plasma spray method, tensile and compression fatigue tests are performed in saline solution to examine the effect of Ti undercoat on corrosion fatigue behavior of alumina-coated specimens. The alumina-coated material using Ti in the undercoat shows better corrosion fatigue strength than the base material in the entire stress amplitude range. Fatigue cracking of UT specimens occurs in the recess formed by grit-blasting treatment and progresses toward the base metal. Subsequently, the undercoat is destroyed at a stage where the deformation of the undercoat cannot follow the crack opening displacement. The residual stress of the UT specimen has a tensile residual stress up to about 100 ㎛ below the surface of the base material; however, when the depth exceeds 100 ㎛, the residual stress becomes a compressive residual stress. In addition, the inside of the spray coating film is compressive residual stress, which contributes to improving the fatigue strength characteristics. A hardened layer due to grit-blasting treatment is formed near the surface of the UT specimen, contributing to the improvement of the fatigue strength characteristics. Since the natural potential of Ti spray coating film is slightly higher than that of the base material, it exhibits excellent corrosion resistance; however, when physiological saline intrudes, a galvanic battery is formed and the base material corrodes preferentially.

송배전용 Al-Cu 접속금구의 신뢰도 향상에 관한 연구(II) 압축형 및 폭발용접형 접속금구의 내식성 비교 (Study on the Improvement of the Reliability of Al-Cu Connections in Power Distribution Systems(II))

  • 하윤철;배정효;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.370-372
    • /
    • 2003
  • As there expands the usage of Al-Cu connections to interface aluminum and copper in power distribution systems, efforts to mitigate the mechanical, electrical or electro-chemical degradation are widely spreading. The explosive bending technology, in particular, has been thought as a countermeasure for the degradation. In this paper, electrochemical analysis and optical microscopic observation are carried out in order to compare the corrosion resistivities of the commercial compression type bimetallic sleeve and the explosion type bimetallic sleeve. The results show that the explosive bonding technology can prevent the interfacial corrosion caused by the formation of crevices and pits as well as from galvanic potential difference.

  • PDF

해양환경 변화가 알루미늄합금 희생양극의 효율에 미치는 영향에 관한 연구 (A Study on the Influence of Al Alloy Sacrificial Anode Efficiency due to Marine Environmental Variation)

  • 김도형
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.106-111
    • /
    • 2000
  • Recently it was reported that the life of Al Sacrifical anode is being used in port piers has been significantly shortened compared with the original design life (e.g. average life shortened from 20 years to 13-15 year) Those factors involving these problems mentioned above were seemed to be a quality of anode material and diverse environmental factors such as pH flow rate temperature Dissolved oxygen Chemical oxygen demand and resistivity etcm In this study flow rate and contamination degree(pH) of sea water affecting to sacrificial anode life hve been investigated in terms of electrochemical characteristics of Al alloy sacrificial anode It was known that the lifetime of Al alloy anode was shortened not only by increasing of self-corrosion quantity by varying flow rate of sea water but also by increasing corrosion current density due to the potential difference increment between Al anode and steel structure cathode by varying contamination degree of sea water. Especially when anode current density is from 1mA/cm2 to 3mA/cm2 and flow rate of sea water is under 2m/s anode current efficiency is 90% above However flow rate is over 2m/s anode current efficiency fell down sharply due to erosion corrosion as well as galvanic corrosion.

  • PDF

간척지대에 매설된 대구경 금속관의 외면 부식손상 평가 (Assessment of external corrosion deterioration of large diameter metallic water pipes buried in reclaimed land)

  • 이호민;최태호;김정현;배철호
    • 상하수도학회지
    • /
    • 제34권5호
    • /
    • pp.373-383
    • /
    • 2020
  • The purpose of this study was to evaluate the corrosion damage of large diameter metallic pipes buried in reclaimed land due to the corrosion effect by soil, and to propose a method of installing metal pipes in the reclaimed land. The results are as follow. First, the soil of the reclaimed land was gray clay, the soil specific resistance indicating soil corrosiveness was at least 120 Ω-cm, the pH was weakly acidic(5.04 to 5.60), the redox potential was at least 62 mV, the moisture content was at most 48.8%, and chlorine ions and sulfate ions were up to 4,706.1 mg/kg and 420 mg/kg. Therefore, the overall soil corrosivity score was up to 19, and the external corrosion effect seems to be very large. Second, the condition of straight part of pipes was in good condition, but most of KP joints were affected by corrosion at a severe level. The reason for this seems to be that KP joints accelerated corrosion due to stress and crevice corrosion in addition to galvanic corrosion in the same environment. Third, as a result of evaluating correlations of each item that affects the corrosion on the external part, the lower the soil resistivity and redox potential, the greater the effect on the KP joints corrosion, and the moisture content, chloride ion, and sulfate ion, the higher the value, the greater the effect on the corrosion of KP joints. In addition, among soil corrosion items, the coefficient of determination of soil resistivity with corrosion of KP joints was the highest with 0.6439~0.7672. Fourth, when installing metal pipes or other accessories because the soil of the reclaimed land is highly corrosive, it is necessary to apply a corrosion preventive method to extend the life of pipes and prevent leakage accidents caused by corrosion damage to the joint.

저순도 Al지금을 사용한 Al-Zn-In-Mg계 Al합금 유전양극의 특성에 관한 연구 (A study of galvanic characteristics of aluminium alloy anode in the Al-Zn-In-Mg system made of the low purity aluminium ingot)

  • 김원녕;김기준;김영대
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.240-249
    • /
    • 1985
  • This paper presents the results of the galvanic anode's characteristicsin the Al-Zn-In-Mg and Al-Zn-In-Mg system anodes used aluminium ingot of low purity, 99.5% grade. The results of thses performance tests are as follows: 1) Zn, In and Mg are an available elements to improve the performance of Aluminium alloy anodes. 2) When the range of zinc content in the Al-Zn-In-Mg system anode is 2-5% the more zinc content, the more improve the anode performance. 3) Al-Zn-In-Mg system anode requires a long term over 50 days for the performance test. 4) The composition of Al-Zn-In-Mg system anode which shows the most excellent performance is Al-(2-3%) Zn-(0.02%) In-(1.0%) Mg. 5) When the Al-Zn-In-Mg system anode is annealed for an hour in 500 to 550 .deg. C, the anode performance is improved. 6) The lower average potential and the better corrosion pattern in the Al-Zn-Mg, Al-Zn-In and Al-Zn-In-Mg system anodes, the more current efficiency is improved.

  • PDF