• Title/Summary/Keyword: Gallium

Search Result 594, Processing Time 0.029 seconds

Characteristic of GaN Growth on the Periodically Patterned Substrate for Several Reactor Configurations (반응로 형상에 따른 주기적으로 배열된 패턴위의 GaN 성장 특성)

  • Kang, Sung-Ju;Kim, Jin-Taek;Pak, Bock-Choon;Lee, Cheul-Ro;Baek, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.225-233
    • /
    • 2007
  • The growth of GaN on the patterned substances has proven favorable to achieve thick, crack-free GaN layers. In this paper, numerical modeling of transport and reaction of species is performed to estimate the growth rate of GaN from tile reaction of TMG(trimethly-gallium) and ammonia. GaN growth rate was estimated through the model analysis including the effect of species velocity, thermal convection and chemical reaction, and thermal condition for the uniform deposition was to be presented. The effect of shape and construction of microscopic pattern was also investigated using a simulator to perform surface analysis, and a review was done on the quantitative thickness and shape in making GaN layer on the pattern. Quantitative analysis was especially performed about the shape of reactor geometry, periodicity of pattern and flow conditions which decisively affect the quality of crystal growth. It was found that the conformal deposition could be obtained with the inclination of trench ${\Theta}>125^{\circ}$. The aspect ratio was sensitive to the void formation inside trench and the void located deep in trench with increased aspect ratio.

A Study on the Liquid Encapsulant Czochralski(LEC) Crystal Growth with Magnetic Fields (자기장하에서 액막 초크랄스키 방법에 의한 단결정 성장에 관한 연구)

  • Kim, Mu-Geun;Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1667-1675
    • /
    • 2001
  • Numerical simulations are carried out for the liquid encapsulant Czochralski(LEC) by imposing a magnetic field. The use of a magnetic field to the crystal growth is to suppress melt convection and to improve the homogeneity of the crystal. In the present numerical investigation, we focus on the range of 0-0.3Tesla strength for the axial and cusped magnetic field and the effect of the magnetic field on the melt-crystal interface, flow field and temperature distribution which are the major factors to determine the quality of the single crystal are of particular interest. For both axial and cusped magnetic field, increase of the magnetic field strength causes a more convex interface to the crystal. In general, the flow is weakened by the application of magnetic field so that the shape of the melt-crystal interface and the transport phenomena are affected by the change of the flow and temperature field.

A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System

  • Rhie, Jong Won;Shim, Jeong Su;Choi, Won Seok
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.52-58
    • /
    • 2015
  • Background The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide ($CO_2$) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Methods Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Results Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. Conclusions The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color.

Au Deposition on Amorphous Ga-In-Zn-O (Gallium-Indium-Zinc-Oxide) Film

  • Gang, Se-Jun;Yu, Han-Byeol;Baek, Jae-Yun;Thakur, Anup;Kim, Hyeong-Do;Sin, Hyeon-Jun;Jeong, Jae-Gwan;Lee, Jae-Cheol;Lee, Jae-Hak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.89-89
    • /
    • 2011
  • a-GIZO(비정질 Ga-In-Zn-O)박막은 유연하며 광학적으로 투명하고 높은 전자의 이동도를 갖는 반도체적 특성을 갖기 때문에 차세대 display분야에서 TFT(Thin-Film-Transistor)의 high speed active-matrix layer로써 각광을 받고 있다. 이 물질의 표면은 환경 및 표면처리에 매우 민감하며 [1,2], 이 표면에 metal이 증착되는 경우에도, 선행 연구에 의하면, 다양한 chemical state가 나타남을 알 수 있었다. 이것은 metal의 증착에 따라 metal과 a-GIZO 사이의 contact 저항이 달라짐을 의미한다. 우리는 a-GIZO 박막 위에 Au를 단계적으로 증착시키면서, Au coverage 증가에 따른 core-level과 valence에서의 x-ray photoelectron spectra의 변화를 살펴봄으로써 a-GIZO박막과 Au의 계면에서 일어나는 chemical state의 변화를 알 수 있었다. 특히, Au deposition의 전 처리과정으로써 Ne ion sputtering을 두 단계로 다르게 하여 a-GIZO의 표면환경에 따른 Au 증착의 영향을 살펴보았다.

  • PDF

RF Magnetron Co-sputtering법으로 형성된 GZO & IGZO 박막의 불순물 농도에 따른 광학적 전기적 특성 연구

  • Hwang, Chang-Su;Park, In-Cheol;Kim, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.85-85
    • /
    • 2011
  • RF magnetron co-sputtering을 이용하여 RF power 및 공정 압력에 따라 GZO 및 IGZO 박막을 유리기판 위에 제작하고 투명전극으로 구조적, 광학적, 전기적 특성을 조사하였다. 박막 증착 조건의 초기 압력은 $1.0{\times}10^{-6}Torr$, 증착온도는 상온으로 고정하였으며 기판은 Corning 1737 유리기판을 사용하였다. 소결된 타겟으로 ZnO, $In_2O_3$$Ga_2O_3$을 이용하였으며, 각각의 타겟은 독립 된 RF파워를 변화시키며 투명전극의 성분비를 조절하였으며, 증착 압력은 10 m에서 100 mTorr까지, 기판과의 거리는 25 mm에서 65 mm까지 변화시키며 박막을 제작하였다. 유리기판 위에 불순물이 첨가된 모든 ZnO 박막에서 (002) 면의 우선배향성이 관찰되었고, 3.4eV에서 3.5eV 정도의 광학적 밴드갭을 가지며 80% 이상의 투과율을 나타내었다. GZO 박막의 경우 증착 조건에 따라 투명전극에 요구되는 $5*10^{-3}{\Omega}-cm$ 이하의 전기적특성을 가짐을 보였으며, gallium 성분이 0%에서 6%로 증가함에 따라 3.3eV에서 3.5eV로 blue-shift하였으며, 비저항은 0.02에서 $0.005{\Omega}cm$로 낮아졌으며 이동도는 $4.7cm^2V^{-1}s^{-1}$에서 $2.7cm^2V^{-1}s^{-1}$로 보이며 GZO 물질이 투명전극으로서 기존의 ITO 물질 대체 가능성을 확인하였다. IGZO 박막은 In과 Ga의 함량에 따라 저항률의 변화가 크게 나타났으며, In의 함량이 많을수록 이동도, 캐리어 농도의 증가로 저항률은 감소하였다.

  • PDF

Thermal Annealing Effects of Amorphous Ga-In-Zn-O Metal Point Contact Field Effect Transistor for Display Application

  • Lee, Se-Won;Jeong, Hong-Bae;Lee, Yeong-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.252-252
    • /
    • 2011
  • 최근 주목받고 있는 amorphous gallium-indium-zinc-oxide (a-GIZO) thin film transistors (TFTs)는 수소가 첨가된 비정질 실리콘 TFT에 비해 높은 이동도와 뛰어난 전기적, 광학적 특성에 의해 큰 주목을 받고 있다. 또한 넓은 밴드갭을 가지므로 가시광 영역에서 투명한 특성을 보이고, 플라스틱 기판 위에서 구부러지는 성질에 의해 플랫 패널 디스플레이나 능동 유기 발광소자 (AM-OLED), 투명 디스플레이에 응용되고 있다. 뿐만 아니라, 일반적인 Poly-Si TFT는 자체적으로 가지는 결정성에 의해 대면적화 시 균일성이 좋지 못하지만 GIZO는 비정질상 이기 때문에 백플레인의 대면적화에 유리하다는 장점이 있다. 이러한 TFT를 제작하기 전, 전기적 특성에 대한 정보를 얻거나 예측하는 것이 중요한데, 이에 따라 고안된 구조가 바로 metal point contact FET (pseudo FET)이다. pseudo FET은 소스/드레인 전극을 따로 증착할 필요 없이 채널을 증착한 후, 프로브 탐침을 채널의 표면에 적당한 압력으로 접촉시켜 전하를 공급하는 소스와 드레인처럼 동작시킬 수 있다. 따라서 소스/드레인을 증착하거나 lithography와 같은 추가적인 공정을 요구하지 않아 소자의 특성을 보다 간단하고 수월하게 분석할 수 있다는 장점이 있다. 본 연구에서는 p-type 기판위에 100nm의 oxidation SiO2를 게이트 절연막으로 사용하는 a-GIZO pseudo FET를 제작하였다. 소자 제작 후, 열처리 온도에 따른 전기적 특성을 분석하였고, 열처리 조건은 30분간 N2 분위기에서 실시하였다. 열처리 후 전기적 특성 분성 결과, 450oC에서 가장 낮은 subthreshold swing 값과 게이트 전압의 더블 스윕 후 문턱 전압의 변화가 거의 없음을 확인하였다.

  • PDF

Novel Fabrication of Designed Silica Structures Inspired by Silicatein-a

  • Park, Ji-Hun;Kwon, Sun-Bum;Lee, Hee-Seung;Choi, In-Sung S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.557-557
    • /
    • 2012
  • Silicatein-${\alpha}$, the enzyme extracted from silica spicules in glass sponges, has been studied extensively in the way of chemistry from 1999, in which the pioneering work by Morse, D. E. - the discovery of the enzymatic hydrolysis in Silicatein-${\alpha}$ - was published. Since its reaction conditions are physiologically favored, synthesis of various materials, such as gallium oxide, zirconium oxide, and silicon oxide, was achieved without any hazardous wastes. Although some groups synthesized oxide films and particles, they have not achieved yet controlled morphogenesis in the reaction conditions mentioned above. With the knowledge of catalytic triad involved in hydrolysis of silicone alkoxide and oligomerization of silicic acid, we designed the novel peptide amphiphiles to not only form self-assembled structure, but also display similar activities to silicatein-${\alpha}$. Designed templates were able to self-assemble into left-handed helices for the peptide amphiphiles with L-form amino acid, catalyzing polycondensation of silicic acids onto the surface of them. It led to the formation of silica helices with 30-50 nm diameters. These results were characterized by various techniques, including SEM, TEM, and STEM. Given the situation that nano-bio-technology, the bio-applicable technology in nanometer scale, has been attracting considerable attention; this result could be applied to the latest applications in biotechnology, such as biosensors, lab-on-a-chip, biocompatible nanodevices.

  • PDF

Preperation of CuInSe2 Nanoparticles by Solution Process Using Precyrsors

  • Choe, Ha-Na;Lee, Seon-Suk;Jeong, Taek-Mo;Kim, Chang-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.376-376
    • /
    • 2011
  • I-III-VI2 chalcopyrite compounds, particularly copper, indium, gallium selenide(Cu(InxGa1-x)Se2, CIGS), are effective light-absorbing materials in thin-film solar application. They are direct band-gap semiconductors with correspondingly high optical absorption coefficients. Also they are stable under long-term excitation. CIS (CIGS) solar cell reached conversion efficiencies as high as 19.5%. Several methods to prepare CIS (CIGS) absorber films have been reported, such as co-evaporation, sputtering, selenization, and electrodeposition. Until now, co-evaporation is the most successful technique for the preparation of CIS (CIGS) in terms of solar efficiency, but it seems difficult to scale up. CIS solar cells have been hindered by high costs associated with a fabrication process. Therefore, inorganic colloidal ink suitable for a scalable coating process could be a key step in the development of low-cost solar cells. Here, we will present the preparation of CIS photo absorption layer by a solution process using novel metal precursors. Chalcopyrite copper indium diselenide (CuInSe2) nanocrystals ranging from 5 to 20nm in diameter were synthesized by arrested precipitation in solution. For the fabrication of CIS photo absorption layer, the CuInSe2 colloidal ink was prepared by dispersing in organic solvent and used to drop-casting on molybdenum substrate. We have characterized the nanoparticless and CIS layer by XRD, SEM, TEM, and ICP.

  • PDF

Growth and characterization of $Cu_2ZnSnSe_4$ (CZTSe) thin films by sputtering of binary selenides and selenization

  • Munir, Rahim;Jung, Gwang-Sun;Ahn, Byung-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • Thin film solar cells are growing up in the market due to their high efficiency and low cost. Especially CdTe and $CuInGaSe_2$ based solar cells are leading the other cells, but due to the limited percentage of the elements present in our earth's crust like Tellurium, Indium and Gallium, the price of the solar cells will increase rapidly. Copper Zinc Tin Sulfide (CZTS) and Copper Zinc Tin Selenide (CZTSe) semiconductor (having a kesterite crystal structure) are getting attention for its solar cell application as the absorber layer. CZTS and CZTSe have almost the same crystal structure with more environmentally friendly elements. Various authors have reported growth and characterization of CZTSe films and solar cells with efficiencies about 3.2% to 8.9%. In this study, a novel method to prepare CZTSe has been proposed based on selenization of stacked Copper Selenide ($Cu_2Se$), Tin Selenide ($SnSe_2$) and Zinc Selenide (Zinc Selenide) in six possible stacking combinations. Depositions were carried out through RF magnetron sputtering. Selenization of all the samples was performed in Close Space Sublimation (CSS) in vacuum at different temperatures for three minutes. Characterization of each sample has been performed in Field Emission SEM, XRD, Raman spectroscopy, EDS and Auger. In this study, the properties and results of $Cu_2ZnSnSe_4$ thin films grown by selenization will be presented.

  • PDF

Enhancing the Performance of InGaN Photoelectrode by Using YAG:Ce3+@ beta-SiALON Phosphor (YAG:Ce3+@ beta-SiALON 형광체를 이용한 InGaN 광전극의 효과적인 물분해)

  • Bae, Hyojung;Lee, Daejang;Cha, An-Na;Ju, Jin-Woo;Moon, Youngboo;Ha, Jun-Seok
    • Current Photovoltaic Research
    • /
    • v.8 no.2
    • /
    • pp.50-53
    • /
    • 2020
  • GaN based photoelectrode has shown good potential owing to its better chemical stability and tunable bandgap with materials such as InN and AlN. Tunable bandgap allows GaN to make the maximum utilization of solar spectrum, which could improve photoelectrode performance. However, the problems about low photoelectrode performance and photo-corrosion still remain. In this study, we attempt to investigate the photoelectrochemical (PEC) properties of phosphor application to InGaN photoelectrode. Experimental result shows YAG:Ce3+ and beta-SiALON phosphor result in the highest photoelectrode performance of InGaN.