• 제목/요약/키워드: Galerkin methods

Search Result 132, Processing Time 0.028 seconds

화학반응이 있는 난류경계층과 충격파의 상호작용에 대한수치해석 (Numerical Simulation of Chemically Reacting Shock Wave-Turbulent Boundary Layer Interactions)

  • 문수연;이충원;손창현
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.375-383
    • /
    • 2002
  • The flowfield of transverse jet in a supersonic air stream subjected to shock wave turbulent boundary layer interactions is simulated numerically by Generalized Taylor Galerkin(GTG) finite element methods. Effects of turbulence are taken into account with a two-equation (k-$\varepsilon$) model with a compressibility correction. Injection pressures and slot widths are varied in the present study. Pressure, separation extents, and penetration heights are compared with experimental data. Favorable comparisons with experimental measurements are demonstrated.

파라메터 기진에 의한 긴수직보의 동적안정성에 관한 연구 (A Study on the Dynamic Stability of the Long Vertical Beam Subjected to the Parametric Excitation)

  • 김용철;홍진숙
    • 대한조선학회논문집
    • /
    • 제28권1호
    • /
    • pp.69-82
    • /
    • 1991
  • 축방향의 주기적인 하중으로 가진되는 긴 수직보의 동적안정성에 관하여 연구하였다. 해석방법으로서 Galerkin방법을 이용하여 무한원 연립 Mathieu형 미분 방정식을 얻었으며, 안정성영역을 나타내는 도표를 얻기 위하여, 섭동법과 수치적인 방법을 사용하였다. 또한 이두가지 방법으로 구한 결과를 서로 비교 검토하였다. 여러가지 경계조건에 대한 안정영역을 구했으며, 김쇠의 영향, 평균인장력 및 다중 주파수 파라메터 기진의 영향에 관해서 집중적으로 연구하였다.

  • PDF

수치해석(미분구적법 DQM)을 이용한 곡선보의 진동분석 (Vibration Analysis of Curved Beams Using Differential Quadrature)

  • Ki-Jun Kang
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.199-207
    • /
    • 1999
  • 곡선보(curved beam)의 평면내(in-plane)와 평면외(out-of-plane)의 자유진동을 해석하는데 differential quadrature method (DQM)를 이용하여 다양한 경계조건(boundary conditions)과 굽힘각 (opening angles)에 따른 진동수(frequencies)를 계산하였다. DQM의 결과는 엄밀해(exact solution) 또는 다른 수치해석(Rayleigh-Ritz, Galerkin 또는 FEM) 결과와 비교하였으며, DQM은 적은 요소(grid points)를 사용하여 정확한 해석결과를 보여주었다.

  • PDF

Strategy for refinement of nodal densities and integration cells in EFG technique

  • Patel, Bhavana S.S.;Narayan, Babu K.S.;Venkataramana, Katta
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.901-920
    • /
    • 2016
  • MeshFree methods have become popular owing to the ease with which high stress gradients can be identified and node density distribution can be reformulated to accomplish faster convergence. This paper presents a strategy for nodal density refinement with strain energy as basis in Element-Free Galerkin MeshFree technique. Two popular flat plate problems are considered for the demonstration of the proposed strategies. Issue of integration errors introduced during nodal density refinement have been addressed by suggesting integration cell refinement. High stress effects around two symmetrical semi-circular notches under in-plane axial load have been addressed in the first problem. The second considers crack propagation under mode I and mode II fracture loading by the way of introducing high stress intensity through line crack. The computational efficacy of the adaptive refinement strategies proposed has been highlighted.

일반 형상의 2차원 영역에서의 멀티스케일 웨이블렛-갤러킨 기법 (Multiscale Wavelet-Galerkin Method in General Two-Dimensional Problems)

  • 김윤영;장강원;김재은
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.939-951
    • /
    • 2002
  • We propose a new multiscale Galerkin method based on interpolation wavelets for two-dimensional Poisson's and plane elasticity problems. The major contributions of the present work are: 1) full multiresolution numerical analysis is carried out, 2) general boundaries are handled by a fictitious domain method without using a penalty term or the Lagrange multiplier, 3) no special integration rule is necessary unlike in the (bi-)orthogonal wavelet-based methods, and 4) an efficient adaptive scheme is easy to incorporate. Several benchmark-type problems are considered to show the effectiveness and the potentials of the present approach. is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

불균일 단면을 갖는 단순지지 보의 모달해석 및 실험 (Modal Analysis and Experiment of a Simply-supported Beam with Non-uniform Cross Sections)

  • 김인우;유봉조;김영식
    • 한국산학기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.8654-8664
    • /
    • 2015
  • 기계, 건축, 토목공학 분야 등에는 불균일 단면을 갖는 보 형태의 구조물들이 널리 사용되고 있다. 본 논문은 양단이 단순 지지된 보 구조물들의 동특성과 진동에 대한 문제를 다루며, 국부좌표를 사용한 지배방정식이 유도된다. 갤러킨의 모드합 방법으로 해가 가정되고, 고유진동수를 구하는 행렬식을 푸는 데는 이분법을 적용하였다. 유한요소법이 단지 기하학적 경계조건만을 만족시키는 허용함수를 사용하는 반면, 본 논문에서는 갤러킨의 모드합 방법을 적용하여, 지배방정식과 경계조건을 모두 만족하는 고유함수를 사용하였다. 계의 동특성을 알기위해, 네 종류의 불균일 단면을 갖는 단순 지지 보에 대해 모달 해석과 시험이 수행되었으며, 해석 결과는 실험 결과와 근사한 일치를 나타내었다.

Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory

  • Kaghazian, Abbas;Hajnayeb, Ali;Foruzande, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.617-624
    • /
    • 2017
  • Piezoelectric nanobeams are used in several nano electromechanical systems. The first step in designing these systems is conducting a vibration analysis. In this research, the free vibration of a piezoelectric nanobeam is analyzed by using the nonlocal elasticity theory. The nanobeam is modeled based on Euler-Bernoulli beam theory. Hamilton's principle is used to derive the equations of motion and also the boundary conditions of the system. The obtained equations of motion are solved by using both Galerkin and the Differential Quadrature (DQ) methods. The clamped-clamped and cantilever boundary conditions are analyzed and the effects of the applied voltage and nonlocal parameter on the natural frequencies and mode shapes are studied. The results show the success of Galerkin method in determining the natural frequencies. The results also show the influence of the nonlocal parameter on the natural frequencies. Increasing a positive voltage decreases the natural frequencies, while increasing a negative voltage increases them. It is also concluded that for the clamped parts of the beam and also other parts that encounter higher values of stress during free vibrations of the beam, anti-nodes in voltage mode shapes are observed. On the contrary, in the parts of the beam that the values of the induced stress are low, the values of the amplitude of the voltage mode shape are not significant. The obtained results and especially the mode shapes can be used in future studies on the forced vibrations of piezoelectric nanobeams based on Galerkin method.

Meshless formulation for shear-locking free bending elements

  • Kanok-Nukulchai, W.;Barry, W.J.;Saran-Yasoontorn, K.
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.123-132
    • /
    • 2001
  • An improved version of the Element-free Galerkin method (EFGM) is presented here for addressing the problem of transverse shear locking in shear-deformable beams with a high length over thickness ratio. Based upon Timoshenko's theory of thick beams, it has been recognized that shear locking will be completely eliminated if the rotation field is constructed to match the field of slope, given by the first derivative of displacement. This criterion is applied directly to the most commonly implemented version of EFGM. However in the numerical process to integrate strain energy, the second derivative of the standard Moving Least Square (MLS) shape functions must be evaluated, thus requiring at least a $C^1$ continuity of MLS shape functions instead of $C^0$ continuity in the conventional EFGM. Yet this hindrance is overcome effortlessly by only using at least a $C^1$ weight function. One-dimensional quartic spline weight function with $C^2$ continuity is therefore adopted for this purpose. Various numerical results in this work indicate that the modified version of the EFGM does not exhibit transverse shear locking, reduces stress oscillations, produces fast convergence, and provides a surprisingly high degree of accuracy even with coarse domain discretizations.

유한요소법에 의한 음장해석에 관한 연구 (Analysis of Sound Fields by Finite Element Method)

  • 최석주;귤수수;박병권
    • 한국음향학회지
    • /
    • 제8권5호
    • /
    • pp.51-58
    • /
    • 1989
  • 유한요소법은 일반적으로 변분원리를 이용해 정식화를 하고 있으나, 본 연구에서는 웨이티드 잔차법으로 아주 좋은 근사해를 얻을 수 있다는 Galerkin법에 의해 Helmholtz방정식으로부터 직접 유산요소 정식화하는 방법을 소개하고, 정식화한 수치계산법을 2, 3차원 음장의 고유모드 및 음향방사상태해석에 응용하였다. 또한 수치 계산결과를 확인하기 위하여 간단한 모형을 제작, 실내음향 모드와 음압분포 등의 측정도 병행하였으며 그 결과, 유한요소법에 의한 수치해석결과의 측정치가 잘 맞는 것을 알았다.

  • PDF

무한탄성영역 해석을 위한 EFG와 BEM의 새로운 결함기법 개발 (A new coupling method of Element-Free Galerkin Method and Boundary Element Method for infinite domain problems in elasticity)

  • 이상호;김명원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.575-582
    • /
    • 2002
  • A new coupling method of Element-Free Galerkin Method(EFGM) and Boundary Element Method(BEM) using the domain decomposition method is presented in this paper. This proposed methodology is that the problem domain is decomposed into sub-domains being modeled by the EFGM and BEM respectively and the respective EFGM and BEM domains share a partially overlapped region over an entire domain. Then, the each sub-domain is separately computed and the variables on common region are iteratively updated until converging. It is an important note that in the developed coupling method, there is no need to combine the coefficient matrices of EFGM and BEM sub-domains, in contrast with the other conventional coupling methods. In the first part of this paper, a theory of EFGM and BEM is summarized, and then a brief introduction of domain decomposition method is described. Then, a new coupling method is presented. Also, patch test and Some numerical examples are studied to verify stability, accuracy and efficiency of the proposed method, in which numerical performance of the method is compared with that of conventional method such as EFGM-BEM variational coupling method, EFGM and BEM.

  • PDF