• Title/Summary/Keyword: Galerkin finite element method

Search Result 248, Processing Time 0.027 seconds

Numerical Research about Asymmetric Growth of Cancer, Angiogenesis and Hemodynamics (암의 비대칭적 성장, 혈관생성 및 혈류역학에 대한 수치적 연구)

  • Kim, Y.S.;Shim, E.B.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2951-2954
    • /
    • 2007
  • Tumor hemodynamics in vascular state is numerically simulated using pressure node solution. The tumor angiogenesis pattern in our previous study is used for the geometry of vessel networks. For tumor angiogenesis, the equation that governed angiogenesis comprises a tumor angiogenesis factor (TAF) conservation equation in time and space, which is solved numerically using the Galerkin finite element method. A stochastic process model is used to simulate vessel formation and vessel. In this study, we use a two-dimensional model with planar vessel structure. Hemodynamics in vessel is assumed as incompressible steady flow with Newtonian fluid properties. In parent vessel, arterial pressure is assigned as a boundary condition whereas a constant terminal pressure is specified in tumor inside. Kirchhoff's law is applied to each pressure node to simulate the pressure distribution in vessel networks. Transient pressure distribution along with angiogenesis pattern is presented to investigate the effect of tumor growth in tumor hemodynamics.

  • PDF

Analysis of Eddy Current Brake for the Vehicle by 2-D Upwind FEM (2차원 유한요소 헤석법에 의한 차량용 와전류 제동기의 해석)

  • Lee, J.C.;Kim, Sol;Kim, Y.H.;Chun, Y.D.;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.593-595
    • /
    • 2001
  • This paper presents the performances of eddy current brake for the vehicle. Because travelling magnetic field problem of eddy current brake cannot be analyzed accurately in Galerkin finite element method(FEM) for large cell Peclet number, the characteristics are analyzed by using 2-D upwind FEM. The magnet stack width are compensated in order to increase the precision of the solution. The validity of the analysis results is obtained by comparing with experimental data.

  • PDF

Active feedback control for cable vibrations

  • Ubertini, Filippo
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.407-428
    • /
    • 2008
  • The nonlinear mechanics of cable vibration is caught either by analytical or numerical models. Nevertheless, the choice of the most appropriate method, in consideration of the problem under study, is not straightforward. A feedback control policy might even enhance the complexity of the system. Thus, in order to design a suitable controller, different approaches are here adopted. Devices mounted transversely to the cable in the two directions, close to one of its ends, supply the feedback control action based on the observation of the response in a few points. The low order terms of the control law are, at first, analyzed in the framework of linear models. Explicit analytic solutions are derived for this purpose. The effectiveness of high order terms in the control law is then explored by means of a finite element model(FEM), which accounts for high order harmonics. A suitably dimensional analytical Galerkin model is finally derived, to investigate the effectiveness of the proposed control strategy, when applied to a physical model.

Numerical Simulation of the Electro-discharge Machining Process of a Conductive Anisotropic Composite (전기전도성 이방성 복합재료 방전가공의 수치모사)

  • 안영철;천갑재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.709-712
    • /
    • 2002
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately the temperature distribution and the shape of the crater were shifted in the same direction respectively and the material removal rate was found to be higher in the case of increasing radial conductivity rather than the axial conductivity.

  • PDF

Saturated - Unsaturated Transient Subsurface Flow Model on a Hillslope

  • Choi, Eun-Ho;Nahm, Sun-Woo
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.13-24
    • /
    • 1991
  • The governing partial differential equation of flow in porous media is developed on the bases of the continuity equation of fluid for transient flow through a saturated-unsaturated zone, and substitution of Dercy's law. The numerical solution is obtained by the Galerkin finite element method based on the principle of weighted residuals. The analysis is carried out by using the unsteady storm data observed and the functional relationships between the hydraulic conductivities, capillary pressure heads, and volumetric water contents under saturated-unsaturated conditions. As the results the hydraulic conductivities, rates of change of storage and initial moisture conditions are significantly influened on the responses of subsurface flow on a hillslope.

  • PDF

Analysis of using Permanent Magnet Eddy Current Brake system (영구자석을 이용한 와전류 제동장치의 특성 해석)

  • Jang, S.M.;Cha, S.D.;Jeong, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.277-279
    • /
    • 2000
  • This paper proposes two kinds of the eddy current brake which uses permanent magnet. The one, like multipolar excitation consists of hexahedron shape of a segmented permanent magnetic and iron situated in the air-gap. The other, like multipolar excitation consists of only a segmented permanent magnetic. We use a finite element method to compute the flux distribution in the model. Also, we use the Galerkin-FEM with linear interpolation function may oscillate between the adjacent nodes to calculate the braking and attraction force. The advantages of the Halbach array are discussed.

  • PDF

Application of DGFEM to 1D Boussinesq Equation (일차원 Boussinesq 방정식에 대한 불연속 갤러킨 기법의 적용)

  • Lee, Haegyun;Lee, Namjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.470-474
    • /
    • 2016
  • Madsen et al. (2002)이 제안한 일차원 고차 Boussinesq 방정식에 대하여 불연속갤러킨 유한요소법(Discontinuous Galerkin Finite Element Method)을 적용하였다. 연속적인 Boussinesq 방정식에서 각 요소경계에 불연속을 허용할 수 있도록 공간차분하고, 시간방향으로 4차 Runge-Kutta 시간적분법, 각 요소사이에는 Lax-Friedrichs 수치흐름률을 사용하였다. 계산영역의 양쪽에 불필요한 파랑의 반사를 억제하도록 흡수층을 설치하였으며, 영역 내부에서 조파할 수 있도록 하였다. Luth et al.(1994)의 수중잠제 실험에 적용하여 관측값과 잘 일치함을 확인하였다.

  • PDF

Effect of Bifurcation Angle on Blood Flow in Flexible Carotid Artery (유연한 경동맥 분지관에서 분지각이 혈액의 유동에 미치는 영향에 관한 연구)

  • Lee, Sang Hoon;Choi, Hyoung Gwon;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.229-235
    • /
    • 2013
  • To investigate the effect of the flexible artery wall on the blood flow, three-dimensional numerical simulations were carried out for analyzing the time-dependent incompressible flows of Newtonian fluids constrained by a flexible wall. The Navier-Stokes equations for fluid flow were solved using the P2P1 Galerkin finite element method, and mesh movement was achieved using an arbitrary Lagrangian-Eulerian formulation. The Newmark method was employed for solving the dynamic equilibrium equations for the deformation of a linear elastic solid. To avoid complexity due to the necessity of additional mechanical constraints, we used a combined formulation that includes both the fluid and structure equations of motion to produce a single coupled variational equation. The results showed that the flexibility of the carotid wall significantly affects flow phenomena during the pulse cycle. The flow field was also found to be strongly influenced by the bifurcation angle.

Oscillatory Motion of Natural Convective Flow in Partially Divided Square Enclosure (수평격판을 갖는 4각형 밀폐공간내에서 자연대류의 진동유동)

  • 김점수;정인기;송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1963-1970
    • /
    • 1992
  • An oscillatory motion of the natural convection in a two dimensional, partially divided square enclosure heated from below, and fitted with a partition is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the mid-height of the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were performed with the variation of the length and the thermal conductivity of the partition, and Rayleigh number based on the temperature difference between horizontal walls and the enclosure height with water(Pr=4.95). also, the effect of the inclination angles was studied for the transition to the oscillating flow. As the results, it was found that the intensity and frequency of oscillatory motion were affected significantly by the Rayleigh number and the length of partition. The effect of oscillatory motion was weaken with the increase of the thermal conductivity of partition. The inclination angle for the transition was raised with the increase of Rayleigh number and the length of partition.

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.