• 제목/요약/키워드: Galerkin's approach

검색결과 60건 처리시간 0.022초

전자계 이론을 기반으로 한 수평접지전극의 접지임피던스 수치계산 (Numerical Calculation for Grounding Impedance of a Horizontal Ground Electrode Based on the Electromagnetic Field Theory)

  • 이복희;조성철
    • 조명전기설비학회논문지
    • /
    • 제28권2호
    • /
    • pp.76-83
    • /
    • 2014
  • This paper deals with the numerical method of calculating the frequency-dependent impedances of grounding electrodes. The proposed electromagnetic field approach is based on the solutions to Maxwell's equations obtained from the method of moment in the frequency domain. In order to evaluate the quality of the proposed simulation method, the frequency-dependent impedances of horizontally-buried ground electrodes were presented. The program for calculating the current distributions and impedances of grounding electrodes was implemented in MATLAB. The grounding impedances of two 10m and 50m long horizontal ground electrodes were measured and simulated in the frequency range from 100Hz to 10MHz for easy analysis and comparison. Also the simulated results were compared with those calculated from a sophisticated computer program CDEGS (HIFREQ module). As a result, the resultant results of frequency-dependent impedances obtained by using the numerical simulation method proposed in this work are in good agreement with experimental data. The validity of the approach techniques was confirmed.

Non-linear aero-elastic response of a multi-layer TPS

  • Pasolini, P.;Dowell, E.H.;Rosa, S. De;Franco, F.;Savino, R.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.449-465
    • /
    • 2017
  • The aim of the present work is to present a computational study of the non-linear aero-elastic behavior of a multi-layered Thermal Protection System (TPS). The severity of atmospheric re-entry conditions is due to the combination of high temperatures, high pressures and high velocities, and thus the aero-elastic behavior of flexible structures can be difficult to assess. In order to validate the specific computational model and the overall strategy for structural and aerodynamics analyses of flexible structures, the simplified TPS sample tested in the 8' High Temperature Tunnel (HTT) at NASA LaRC has been selected as a baseline for the validation of the present work. The von $K{\acute{a}}rm{\acute{a}}n^{\prime}s$ three dimensional large deflection theory for the structure and a hybrid Raleigh-Ritz-Galerkin approach, combined with the first order Piston Theory to describe the aerodynamic flow, have been used to derive the equations of motion. The paper shows that a good description of the physical behavior of the fabric is possible with the proposed approach. The model is further applied to investigate structural and aero-elastic influence of the number of the layers and the stitching pattern.

Wavelet-Galerkin Scheme of Inhomogeneous Electromagnetic Problems in the time Domain

  • 정영욱;이용민;최진일;나극환;강준길;신철재
    • 한국전자파학회논문지
    • /
    • 제10권4호
    • /
    • pp.550-563
    • /
    • 1999
  • 본 논문은 시변 맥스웰 방정식에 기초한 웨이브릿-갤러킨 설계를 제안하였다. 두 개의 모멘트 함수가 0 이 되는 Daubechies 웨이브릿 함수를 기저함수로 전개하고 Yee가 제안한 Leap-frog 접근법을 적용하였다. D Daubechies 웨이브릿의 변위된 보간 특성을 이용하여 적분이나 매체 연산자에 대한 부가적인 행렬이 필요없 는 방정식을 유도하였다 안정화 조건을 유도하고 분산특성을 분석한 후 유한차분 시간영역법과 다해상도 시 간영역법의 결과와 비교하였고. 분산특성의 분석을 통해 기저함수의 정규성(Regularity)과 받침폭(Support width) 사이의 균형을 확인했다. 기저함수가 단 2개의 0이 되는 웨이브릿 모멘트 함수를 가지지만. 이는 수치 해석 상에서 무시할 수 있는 분산 오류를 수반하였고, 컴팩트 받침(Compact support)에 의해 노드 당 적은 수의 계수만이 고려되었다. 제안된 설계의 저장계수의 효율, 실행 시간의 감소와 정확도를 균일 공진기와 비 균일 공진기의 공진주파수 해석을 통해 검증하였다.

  • PDF

Hinged-clamped 보의 확률적 응답특성 (Stochastic Response of a Hinged-Clamped Beam)

  • 조덕상
    • 한국산업융합학회 논문집
    • /
    • 제3권1호
    • /
    • pp.43-51
    • /
    • 2000
  • The response statistics of a hinged-clamped beam under broad-band random excitation is investigated. The random excitation is applied at the nodal point of the second mode. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. A method based upon the Markov vector approach is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. The analytical results for two and three mode interactions are also compared with results obtained by Monte Carlo simulation.

  • PDF

ESTIMATION OF NET GROUND WATER RECHARGE IN LARGE AQUIFER SYSTEMS BY GENETIC ALGORITHM: A CASE STUDY

  • K. Lakshmi Prasad;A. K. Rastogi
    • Water Engineering Research
    • /
    • 제2권3호
    • /
    • pp.161-169
    • /
    • 2001
  • Present study deals with the development of a numerical model for the estimation of net annual recharge by coupling the Galerkin's finite element flow simulationl model with the Gauss-Newton-Marquardt optimization technique. The developed coupled numerical model is applied for estimating net annual recharge for Mahi Right Bank Canal (MRBC) project the norms of Groundwater Resources Estimation committee (1984, 1997) and Indian Agricultural research Institute(1983). It is observed that the estimated net recharge by inverse modeling is closer to the net recharge estimated using the water balance approach. Further it is observed that the computed head distribution from the estimated recharge agree closely with the observed head distribution. The study concludes that the developed model for inverse modeling can be successfully applied to large groundwater system involving regional aquifers where reliable recharge estimation always requires considerable time and financial resources.

  • PDF

Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제67권2호
    • /
    • pp.143-153
    • /
    • 2018
  • Thermal buckling of nonlocal flexoelectric nanoplates incorporating surface effects is analyzed for the first time. Coupling of strain gradients and electrical polarizations is introduced by flexoelectricity. It is assumed that flexoelectric nanoplate is subjected to uniform and linear temperature distributions. Long range interaction between atoms of nanoplate is modeled via nonlocal elasticity theory. The residual surface stresses which are usually neglected in modeling of flexoelectric nanoplates are incorporated into nonlocal elasticity to provide better understanding of the physic of problem. A Galerkin-based approach is implemented to solve the governing equations derived from Hamilton's principle are solved. The verification of obtained results is performed by comparing buckling loads of flexoelectric nanoplate with previous data. It is shown that buckling loads of flexoelectric nanoplate are significantly affected by thermal loading type, temperature change, nonlocal parameter, surface effect, plate thickness and boundary conditions.

On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading

  • Shariati, Ali;Ebrahimi, Farzad;Karimiasl, Mahsa;Vinyas, M.;Toghroli, Ali
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.49-58
    • /
    • 2020
  • This paper investigates the vibration characteristics of flexoelectric nanobeams resting on viscoelastic foundation and subjected to magneto-electro-viscoelastic-hygro-thermal (MEVHT) loading. In this regard, the Nonlocal strain gradient elasticity theory (NSGET) is employed. The proposed formulation accommodates the nonlocal stress and strain gradient parameter along with the flexoelectric coefficient to accurately predict the frequencies. Further, with the aid of Hamilton's principle the governing differential equations are derived which are then solved through Galerkin-based approach. The variation of the natural frequency of MEVHT nanobeams under the influence of various parameters such as the nonlocal strain gradient parameter, different field loads, power-law exponent and slenderness ratio are also investigated.

Controlling of ring based structure of rotating FG shell: Frequency distribution

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • 제14권1호
    • /
    • pp.35-43
    • /
    • 2022
  • Based on novel Galerkin's technique, the theoretical study gives a prediction to estimate the vibrations of FG rotating cylindrical shell. Terms of ring supports have been introduced by a polynomial function. Three different laws of volume fraction are utilized for the vibration of cylindrical shells. Variation frequencies with the locations of ring supports have been analyzed and these ring supports are placed round the circumferential direction. The base of this approach is an approximate estimation of eigenvalues of proper functions which are the results of solutions of vibrating equation. Each longitudinal wave number corresponds to a particular boundary condition. The results are given in tabular and graphical forms. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. There is a new form of frequencies is obtained for different positions of ring supports, which is bell shaped. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases.

Limit elastic speed analysis of rotating porous annulus functionally graded disks

  • Madan, Royal;Bhowmick, Shubhankar;Hadji, Lazreg;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.375-388
    • /
    • 2022
  • In this work, limit elastic speed analysis of functionally graded porous rotating disks has been reported. The work proposes an effective approach for modeling the mechanical properties of a porous functionally graded rotating disk. Four different types of porosity models namely: uniform, symmetric, inner maximum, and outer maximum distribution are considered. The approach used is the variational principle, and the solution has been achieved using Galerkin's error minimization theory. The study aims to investigate the effect of grading indices, aspect ratio, porosity volume fraction, and porosity types on limit angular speed for uniform and variable disk geometries of constant mass. To validate the current study, finite element analysis has been used, and there is good agreement between the two methods. The study yielded a decrease in limit speed as grading indices and aspect ratio increase. The porosity volume fraction is found to be more significant than the aspect ratio effect. The research demonstrates a range of operable speeds for porous and non-porous disk profiles that can be used in industries as design data. The results show a significant increase in limit speed for an exponential disk when compared to other disk profiles, and thus, the study demonstrates a range of FG-based structures for applications in industries that will not only save material (lightweight structures) but also improve overall performance.

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.