• 제목/요약/키워드: Galerkin's approach

검색결과 60건 처리시간 0.023초

경사기능재료 사각 판의 열 탄성 변형과 응력 해석 (Thermoelastic deformation and stress analysis of a FGM rectangular Plate)

  • 김귀섭
    • 한국항공우주학회지
    • /
    • 제31권1호
    • /
    • pp.34-41
    • /
    • 2003
  • 경사기능재료 판에 대한 열탄성 변형과 응력 해석을 위해 Green 함수 방법이 채택되었다. 3차원 정상 온도분포에 대한 해는 적층판 이론에 의해 얻어진다. 열탄성 문제에 대한 기본 방정식은 각각 평면의(out-plane) 변형과 평면내(in-plane) 힘에 의해 유도되었다. 굽힙과 평면내 힘으로 인한 열탄성 변형과 응력분포는 Galerkin 방법에 근거한 Green 함수를 이용하여 해석되었다. 열탄성 변형과 응력분포 해석을 위한 Galerkin Green 함수의 특성함수들은 사각판의 제차 경계조건을 만족시키는 허용함수들의 급수 형태로 근사화 되었다. 수치예제가 수행되었으며, 경사기능재료의 물성치가 판의 열탄성 거동에 미치는 영향이 검토되었다.

Vibration analysis of a uniform beam traversed by a moving vehicle with random mass and random velocity

  • Chang, T.P.;Liu, M.F.;O, H.W.
    • Structural Engineering and Mechanics
    • /
    • 제31권6호
    • /
    • pp.737-749
    • /
    • 2009
  • The problem of estimating the dynamic response of a distributed parameter system excited by a moving vehicle with random initial velocity and random vehicle body mass is investigated. By adopting the Galerkin's method and modal analysis, a set of approximate governing equations of motion possessing time-dependent uncertain coefficients and forcing function is obtained, and then the dynamic response of the coupled system can be calculated in deterministic sense. The statistical characteristics of the responses of the system are computed by using improved perturbation approach with respect to mean value. This method is simple and useful to gather the stochastic structural response due to the vehicle-passenger-bridge interaction. Furthermore, some of the statistical numerical results calculated from the perturbation technique are checked by Monte Carlo simulation.

Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique

  • Ghannadpour, S.A.M.;Moradi, F.
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.311-324
    • /
    • 2019
  • The present study aims to evaluate the nonlinear and post-buckling behaviors of orthotropic graphene sheets exposed to end-shortening strain by implementing a semi-Galerkin technique, as a new approach. The nano-sheets are regarded to be on elastic foundations and different out-of-plane boundary conditions are considered for graphene sheets. In addition, nonlocal elasticity theory is employed to achieve the post-buckling behavior related to the nano-sheets. In the present study, first, out-of-plane deflection function is considered as the only displacement field in the proposed technique, which is hypothesized by an appropriate deflected form. Then, the exact nonlocal stress function is calculated through a complete solution of the von-Karman compatibility equation. In the next step, Galerkin's method is used to solve the unknown parameters considered in the proposed technique. In addition, three different scenarios, which are significantly different with respect to concept, are used to satisfy the natural in-plane boundary conditions and completely attain the stress function. Finally, the post-buckling behavior of thin graphene sheets are evaluated for all three different scenarios, and the impacts of boundary conditions, polymer substrate, and nonlocal parameter are examined in each scenario.

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid;Nasserdine Kechkar
    • 대한수학회지
    • /
    • 제61권4호
    • /
    • pp.621-657
    • /
    • 2024
  • In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.

자유단 혹은 노드점에 작용하는 스프링과 부가질량을 받는 일단 지지보의 고유진동수 (Eigen-Frequency of a Cantilever Beam Restrained with Added Mass and Spring at Free End or a Node Point)

  • 심우건
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.32-40
    • /
    • 2018
  • 열 교환기/원자로의 과도한 진동을 방지 하려면 진동해석을 설계 단계에서 수행해야 한다. 진동 문제에서 고유 진동수의 정보는 열 교환기/원자로의 안전성을 평가하기 위하여 요구된다. 본 논문은 일단 지지보에 발생되는 고유치 문제를 해석하기 위하여 수치해석 방법인 Galerkin의 방법을 기술하였다. 일단 지지보는 자유단 끝점 또는 모드의 노드 포인트에 부가 질량과 스프링에 의하여 구속되어 있다. 수치해석으로 구한 고유진동수는 간단한 해석 방법과 간단한 테스트에 의하여 각각 구한 결과와 비교 되었다. Galerkin의 방법을 사용하여 논의된 일단 지지보의 고유 진동수를 구할 수 있음을 보였다. 부가 질량 증가함에 따라 고유 주파수는 감소하며 스프링 힘의 증가에 따라 고유 주파수는 상승함을 보였다. 무거운 부가 질량은 가연성 배관의 지지대 역할을 함을 보였다. 일단 지지보의 끝단에 설치된 부가 질량의 경우에 개발된 기존의 어림적 해석 방법으로도 일차 모두의 고유 진동수를 비교적 정확하게 구할 수 있음을 알 수 있었다.

월쉬 금수 전개에 의한 분포정수계의 해석에 관한 연구 (A Study on Analysis of Distributed Parameter Systems via Walsh Series Expansions)

  • 안두수;심재선;이명규
    • 대한전기학회논문지
    • /
    • 제35권3호
    • /
    • pp.95-101
    • /
    • 1986
  • This paper describes two methods for analyzing distributed parameter systems (DPS) via Walsh series expansions. Firstly, a Walsh-Galerkin expansion approach technique (WGA) introduced by S.G. Tzafestas. is considered. The method which is based on Galerkin scheme, is well established by using Walsh series. But then, there are some difficulty in finding the proper basic functions at each systems. Secondly, a double Walsh series approach technique (DWA) is developed. The essential feature of DWA propoesed here is that it reduces the analysis problem of DPS to that of solving a set of linear algebraic equation which is extended in double Walsh series.

  • PDF

The continuous-discontinuous Galerkin method applied to crack propagation

  • Forti, Tiago L.D.;Forti, Nadia C.S.;Santos, Fabio L.G.;Carnio, Marco A.
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.235-243
    • /
    • 2019
  • The discontinuous Galerkin method (DGM) has become widely used as it possesses several qualities, such as a natural ability to dealing with discontinuities. DGM has its major success related to fluid mechanics. Its major importance is the ability to deal with discontinuities and still provide high order of approximation. That is an important advantage when simulating cracking propagation. No remeshing is necessary during the propagation, since the crack path follows the interface of elements. However, DGM comes with the drawback of an increased number of degrees of freedom when compared to the classical continuous finite element method. Thus, it seems a natural approach to combine them in the same simulation obtaining the advantages of both methods. This paper proposes the application of the combined continuous-discontinuous Galerkin method (CDGM) to crack propagation. An important engineering problem is the simulation of crack propagation in concrete structures. The problem is characterized by discontinuities that evolve throughout the domain. Crack propagation is simulated using CDGM. Discontinuous elements are placed in regions with discontinuities and continuous elements elsewhere. The cohesive zone model describes the fracture process zone where softening effects are expressed by cohesive zones in the interface of elements. Two numerical examples demonstrate the capacities of CDGM. In the first example, a plain concrete beam is submitted to a three-point bending test. Numerical results are compared to experimental data from the literature. The second example deals with a full-scale ground slab, comparing the CDGM results to numerical and experimental data from the literature.

경사기능재료 사각 판의 비정상 열 탄생변형과 응력해석 (Unsteady Thermoelasic Deformation and Stress Analysis of a FGM Rectangular Plate)

  • 김귀섭
    • 한국항공우주학회지
    • /
    • 제32권8호
    • /
    • pp.91-100
    • /
    • 2004
  • 경사기능재료 판에 대한 열탄성 변형과 응력 해석을 위해 Green 함수 방법이 채택되었다. 3 차원 비정상 온도분포에 대한 해는 적층판 이론에 의해 얻어진다. 열탄성 문제에 대한 기본 방정식은 각각 평면외 (out-plane) 변형과 평면내 (in-plane) 힘에 의해 유도되었다. 굽힘과 평면내 힘에 의한 열탄성 변형과 응력분포는 Galerkin 방법에 근거한 Green 함수를 이용하여 해석하였다. 열탄성 변형과 응력분포 해석을 위한 Galerkin Green 함수의 특성함수들은 사각판의 제차 경계조건을 만족시키는 허용함수들의 급수 형태로 근사화되었다. 단수지시된 사각 판에 대한 수치해석이 수행되었으며, 정사기능재료의 물성치가 판의 비정상 열탄성 거동에 미치는 영향이 검토되었다.

비정렬 격자계에서 고차 정확도 불연속 갤러킨-다차원 공간 제한 기법을 이용한 유동 물리 해석 (FLOW PHYSICS ANALYSES USING HIGHER-ORDER DISCONTINUOUS GALERKIN-MLP METHODS ON UNSTRUCTURED GRIDS)

  • 박진석;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.311-317
    • /
    • 2011
  • The present paper deals with the continuous works of extending the multi-dimensional limiting process (MLP) for compressible flows, which has been quite successful in finite volume methods, into discontinuous Galerkin (DG) methods. From the series of the previous, it was observed that the MLP shows several superior characteristics, such as an efficient controlling of multi-dimensional oscillations and accurate capturing of both discontinuous and continuous flow features. Mathematically, fundamental mechanism of oscillation-control in multiple dimensions has been established by satisfaction of the maximum principle. The MLP limiting strategy is extended into DG framework, which takes advantage of higher-order reconstruction within compact stencil, to capture detailed flow structures very accurately. At the present, it is observed that the proposed approach yields outstanding performances in resolving non-compressive as well as compressive flaw features. In the presentation, further numerical analyses and results are going to be presented to validate that the newly developed DG-MLP methods provide quite desirable performances in controlling numerical oscillations as well as capturing key flow features.

  • PDF