• Title/Summary/Keyword: Galaxies: structure

Search Result 207, Processing Time 0.025 seconds

A Hyper Suprime-Cam View of the Interacting Galaxies of the M81 Group - Structures and Stellar Populations

  • Arimoto, Nobuo;Okamoto, Sakurako
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.39.2-39.2
    • /
    • 2017
  • Over the last decade, deep studies of nearby galaxies have led to the discovery of vast stellar envelopes that are often rich in substructure. These components are naturally predicted in models of hierarchical galaxy assembly, and their observed properties place important constraints on the amount, nature, and history of satellite accretion. One of the most effective ways of mapping the peripheral regions of galaxies is through resolved star studies. Using wide-field cameras equipped to 8 m class telescopes, it has recently become possible to extend these studies to systems beyond the Local Group. Located at a distance of 3.6 Mpc, M81 is a prime target for wide-field mapping of its resolved stellar content. In this talk, we present the detailed results from our deep wide-field imaging survey of the M81 group with the Hyper Suprime-Cam (HSC), on the Subaru Telescope. We report on the analysis of the structures, stellar populations, and metallicities of old dwarf galaxies such as NGC3077, IKN, KDG061, as well as young stellar systems such as Arp's Loop and Holmberg IX. Several candidates for yet-undiscovered faint dwarf galaxies and young stellar clumps in the M81 group will also be introduced. The peculiar galaxy NGC3077 has been classified as the irregular galaxy. Okamoto et al. (2015, ApJ 809, L1) discovered an extended halo structure with S-shape elongated tails, obvious feature of tidal interaction. With a help of numerical simulation by Penarrubia et al. (2009, ApJ 698, 222), we will demonstrate that this tidal feature was formed during the latest close encounters between M81, M82, and NGC 3077, which induced star formation in tidally stripped gas far from the main bodies of galaxies. It is not clear whether the latest tidal interaction was the first close encounters of three galaxies. If NGC3077 is still surrounded by the dark matter halo, it implies that NGC3077 has undergone the first tidal stripping by larger companions. Kinematic studies of inter galactic globular clusters and planetary nebulae would tell us the past history of tidal interaction in this group of galaxies.

  • PDF

THE VIRIAL RELATION AND INTRINSIC SHAPE OF EARLY-TYPE GALAXIES

  • TRIPPE, SASCHA
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.5
    • /
    • pp.193-198
    • /
    • 2016
  • Early-type galaxies (ETGs) are supposed to follow the virial relation $M=k_e{\sigma}^2R_e/G$, with M being the mass, σ* being the stellar velocity dispersion, Re being the effective radius, G being Newton's constant, and ke being the virial factor, a geometry factor of order unity. Applying this relation to (a) the ATLAS3D sample of Cappellari et al. (2013) and (b) the sample of Saglia et al. (2016) gives ensemble-averaged factors 〈ke〉 = 5.15 ± 0.09 and 〈ke〉 = 4.01 ± 0.18, respectively, with the difference arising from different definitions of effective velocity dispersions. The two datasets reveal a statistically significant tilt of the empirical relation relative to the theoretical virial relation such that $M{\propto}({\sigma}^2_*R_e)^{0.92}$. This tilt disappears when replacing Re with the semi-major axis of the projected half-light ellipse, a. All best-fit scaling relations show zero intrinsic scatter, implying that the mass plane of ETGs is fully determined by the virial relation. Whenever a comparison is possible, my results are consistent with, and confirm, the results by Cappellari et al. (2013). The difference between the relations using either a or Re arises from a known lack of highly elliptical high-mass galaxies; this leads to a scaling (1 - ϵ ) ∝ M0.12, with ϵ being the ellipticity and $R_e=a\sqrt[]{1-{\epsilon}}$. Accordingly, a, not Re, is the correct proxy for the scale radius of ETGs. By geometry, this implies that early-type galaxies are axisymmetric and oblate in general, in agreement with published results from modeling based on kinematics and light distributions.

Wide-field and Deep Survey of Nearby Southern Clusters of Galaxies

  • Rey, Soo-Chang;Sung, Eon-Chang;Jerjen, Helmut;Lisker, Thorsten;Chung, Ae-Ree;Kim, Suk;Lee, Young-Dae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.121-121
    • /
    • 2011
  • Thanks to KMTNet's wide field of view, it is time to implement imaging survey of extensive area of clusters of galaxies in the southern sky with modern instrument. As part of potential long-term survey of nearby (D < 50 Mpc) well-known clusters of galaxies, we propose a wide-field and deep survey of Fornax cluster as a first step of the project. By imaging the 400 square deg region (100 fields) enclosed within the five times virial radius of the Fornax cluster, in three SDSSfilters(g', r', i'), we can provide an unprecedented view of structure of Fornax cluster using sample from giant to dwarf galaxies. We will secure galaxies with brightness comparable to the limiting magnitude (r'=23.1 AB mag) of SDSS. Furthermore, we also request extremely deep (limiting surface brightness of ~ 28 mag $arcsec^{-2}$forr'band) survey for the central region (16 square degree, i.e., four fields) of Fornax cluster. This will allow us to detect the diffuse intracluster light (ICL) that permeates clusters as a valuable tool for studying the hierarchical nature of cluster assembly. In order to complete whole survey, about 285 hr observing time (without overhead) is required. By combining data available at other wavelengths, it will offer unique constraints on the formation of large-scale structure and also provide important clues for theories of galaxy formation and evolution. Our proposed survey will be implemented in the close collaboration with researchers in various countries (Germany, Australia, UK, USA) and ongoing project (e.g., SkyMapper).

  • PDF

Dark Matter Deficient Galaxies Produced via High-velocity Galaxy Collisions In High-resolution Numerical Simulations

  • Shin, Eun-jin;Jung, Minyong;Kwon, Goojin;Kim, Ji-hoon;Lee, Joohyun;Jo, Yongseok;Oh, Boon Kiat
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2020
  • The recent discovery of diffuse dwarf galaxies that are deficient in dark matter appears to challenge the current paradigm of structure formation in our Universe. We describe the numerical experiments to determine if the so-called dark matter deficient galaxies (DMDGs) could be produced when two gas-rich, dwarf-sized galaxies collide with a high relative velocity of ~ 300km/s. Using idealized high-resolution simulations with both mesh-based and particle-based gravito-hydrodynamics codes, we find that DMDGs can form as high-velocity galaxy collisions separate dark matter from the warm disk gas which subsequently is compressed by shock and tidal interaction to form stars. Then using a large simulated universe ILLUSTRISTNG, we discover a number of high-velocity galaxy collision events in which DMDGs are expected to form. However, we did not find evidence that these types of collisions actually produced DMDGs in the ILLUSTRISTNG100-1 run. We argue that the resolution of the numerical experiment is critical to realize the "collision-induced" DMDG formation scenario. Our results demonstrate one of many routes in which galaxies could form with unconventional dark matter fractions.

  • PDF

CLUSTERING OF EXTREMELY RED OBJECTS IN THE SUBARU GTO 2DEG2 FIELD

  • Shin, Jihey;Shim, Hyunjin;Hwang, Ho Seong;Ko, Jongwan;Lee, Jong Chul;Utsumi, Yousuke;Hwang, Narae;Park, Byeong-Gon
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.3
    • /
    • pp.61-70
    • /
    • 2017
  • We study the angular correlation function of bright ($K_s{\leq}19.5$) Extremely Red Objects (EROs) selected in the Subaru GTO 2$deg^2$ field. By applying the color selection criteria of $R-K_s$ > 5.0, 5.5, and 6.0, we identify 9055, 4270, and 1777 EROs, respectively. The number density is consistent with similar studies on the optical - NIR color selected red galaxies. The angular correlation functions are derived for EROs with different limiting magnitude and different $R-K_s$ color cut. When we assume that the angular correlation function $w({\theta})$ follows a form of a power-law (i.e., $w({\theta})=A{\theta}^{-{\delta}}$), the value of the amplitude A was larger for brighter EROs compared to the fainter EROs. The result suggests that the brighter, thus more massive high-redshift galaxies, are clustered more strongly compared to the less massive galaxies. Assuming that EROs have redshift distribution centered at ~ 1.1 with ${\sigma}_z=0.15$, the spatial correlation length $r_0$ of the EROs estimated from the observed angular correlation function ranges ${\sim}6-10h^{-1}Mpc$. A comparison with the clustering of dark matter halos in numerical simulation suggests that the EROs are located in most massive dark matter halos and could be progenitors of $L_{\ast}$ elliptical galaxies.

X-RAYING LARGE-SCALE STRUCTURE

  • HENRY J. PATRICK
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.371-374
    • /
    • 2004
  • We review the observational evidence for the existence of a warm-hot intergalactic medium (WHIM). We expect that the morphology of this material is similar to that of cosmic rays and magnetic fields in large-scale structure, i.e., filaments connecting clusters of galaxies. Direct evidence for the WHIM, either in emission or absorption, is weak.

GENERATION OF MAGNETIC FIELDS BY TEMPERATURE GRADIENTS

  • OKABE NOBUHIRO;HATTORI MAKOTO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.547-551
    • /
    • 2004
  • We showed that magnetic fields are generated in the plasma which have the temperature inhomogeneities. The mechanism is the same as the Weibel instability because the velocity distribution functions are at non-equilibrium and anisotropic under the temperature gradients. The growth timescale is much shorter than the dynamical time of structure formation. The coherence length of magnetic fields at the saturated time is much shorter than kpc scale and then, at nonlinear phase, become longer by inverse-cascade process. We report the application of our results to clusters of galaxies, not including hydrodynamic effects.

Three Dimensional Numerical Code for the Expanding Flat Universe

  • Min, Kyoung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.101-106
    • /
    • 1987
  • The current distribution of galaxies may contain clues to the condition of the universe when the galaxies condensed and to nature of the subsequent expansion of the universe. The development of this large scale structure can be studied by employing N-body computer simulations. The present paper describes the code developed for this purpose. The computer code calculates the motion of collisionless matter acting under the force of gravity in an expanding flat universe. The test run of the code shows the error less than 0.5% in 100 iterations.

  • PDF