• Title/Summary/Keyword: Galaxies: multi-wavelength

Search Result 54, Processing Time 0.028 seconds

OVERVIEW OF NORTH ECLIPTIC POLE DEEP MULTI-WAVELENGTH SURVEY (NEP-DEEP)

  • Matsuhara, H.;Wada, T.;Oi, N.;Takagi, T.;Nakagawa, T.;Murata, K.;Goto, T.;Oyabu, S.;Takeuchi, T.T.;Malek, K.;Solarz, A.;Ohyama, Y.;Miyaji, T.;Krumpe, M.;Lee, H.M.;Im, M.;Serjeant, S.;Pearson, C.P.;White, G.J.;Malkan, M.A.;Hanami, H.;Ishigaki, T.;Burgarella, D.;Buat, V.;Pollo, A.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.213-217
    • /
    • 2017
  • The recent updates of the North Ecliptic Pole deep ($0.5deg^2$, NEP-Deep) multi-wavelength survey covering from X-ray to radio-wave is presented. The NEP-Deep provides us with several thousands of $15{\mu}m$ or $18{\mu}m$ selected galaxies, which is the largest sample ever made at these wavelengths. A continuous filter coverage in the mid-infrared wavelength (7, 9, 11, 15, 18, and 24 µm) is unique and vital to diagnose the contributions from starbursts and AGNs in the galaxies out to z=2. The new goal of the project is to resolve the nature of the cosmic star formation history at the violent epoch (e.g. z=1-2), and to find a clue to understand its decline from z=1 to present universe by utilizing the unique power of the multiwavelength survey. The progress in this context is briefly mentioned.

Discovery of high redshift galaxy clusters and superclusters and study of star formation-density relation

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook;Edge, Alastair C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2015
  • Galaxy cluster is the most important laboratoriy to study the effect of environment on galaxies, one of key questions in astronomy. In the local universe, it is well known that red, passive galaxies are concentrated in the cluster core. However, it is still controversial whether the star formation-density relation at the low redshift is retained in the distant universe. Many surveys have tried to find galaxy clusters at various epochs. However the optical dataset has limitations in finding galaxy clusters at z > 1, since the bulk of stellar emission of z > 1 galaxies is redshifted into the near-IR regime. We used the multi-wavelength data from the UKIDSS DXS (J and K bands), the SWIRE (4 IRAC bands), and the PAN-STARRS (g, r, i, z, y bands) and IMS (J band; Im et al. 2015, in preparation) in the European Large Area ISO Survey North1 (ELAIS-N1) field to search for high redshift galaxy clusters and study the properties of member galaxies. Using the multi-wavelength data, we investigated overdensities of galaxies at 0.2 < z < 1.6 based on the photometric redshift information. We found several superclusters where cluster candidates are concentrated within scales of few tens of Mpc at z ~ 0.9. Interestingly, some of the supercluster candidates consist of galaxy clusters which are dominated by blue galaxies. We will present high redshift galaxy cluster and supercluster candidates in ELAIS-N1 field and galaxy properties in different environments including dense clusters and fields.

  • PDF

A New Galaxy Classification Scheme in the WISE Color-Luminosity Diagram

  • Lee, Gwang-Ho;Sohn, Jubee;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.49.1-49.1
    • /
    • 2013
  • We present a new galaxy classification scheme in the Wide-field Infrared Survey Explorer (WISE) [$3.4{\mu}m$]-[$12{\mu}m$] color versus $12{\mu}m$ luminosity diagram. In this diagram, galaxies can be classified into three groups in different evolutionary stages. Late-type galaxies are distributed linearly along "MIR star-forming sequence" identified by Hwang et al. (2012). Some early-type galaxies show another sequence at [3.4]-[12] $(AB){\simeq}-2.0$, and we call this 'MIR blue sequence'. They are quiescent systems with old stellar population older than 10 Gyr. Between the MIR star-forming sequence and the MIR blue sequence, some early- and late-type galaxies are sparsely distributed, and we call these galaxies 'MIR green cloud galaxies'. Interestingly, both MIR blue sequence galaxies and MIR green cloud ones lie on the red sequence in the optical color-magnitude diagram. However, MIR green cloud galaxies have lower stellar masses and younger stellar populations (smaller $D_n4000$) than MIR blue sequence galaxies, suggesting that MIR green cloud galaxies are in the transition stage from MIR star-forming sequence galaxies to MIR blue sequence ones. We present differences in various galaxy properties between the three MIR classes using a multi-wavelength data, combined with the WISE and Sloan Digital Sky Survey Data Release 10, of local (0.03 < z < 0.07) galaxies.

  • PDF

Specific star formation rate of the MIR-selected galaxies in AKARI NEP-Wide

  • Lee, Dongseob;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.60.1-60.1
    • /
    • 2018
  • We investigate the $SFR-M_{\star}$ relation of the infrared luminous galaxies selected in either $11{\mu}m$ and $15{\mu}m$ from the $5.6deg^2$ of the AKARI NEP-Wide field. From the constructed multi-wavelength catalog spanning $0.3{\mu}m$ to $24{\mu}m$, we select 3,408 S11 > $50{\mu}Jy$ galaxies and 1,896 L15 > $20{\mu}Jy$ galaxies which corresponds to $L_{IR}{\sim}10^{11}L_{\odot}$ at z ~ 0.5 and 0.7 respectively. Photometric redshifts of the selected galaxies were derived using LePHARE and Coleman Extended templates. ~98% S11 selected galaxies are galaxies with (median redshift) ~ 0.4, and ~96% L15 selected galaxies are galaxies with ~ 0.6. Star formation rates and stellar mass of these galaxies were calculated using MAGPHYS which derives physical parameters with SED fitting. In the SFR-$M_{\star}$ diagram, $11{\mu}m/15{\mu}m$ selected galaxies are located in the main sequence of star-forming galaxies at z ~ 1.

  • PDF

What Do MIR Properties of Galaxies in the Coma Supercluster Tell Us?

  • Lee, Gwang-Ho;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.76.3-77
    • /
    • 2015
  • MIR colors are an excellent tool to investigate the transition phase of galaxy evolution in terms of star formation at various phases. The Coma supercluster is the nearest massive supercluster, hosting two main clusters, the Coma (Abell 1656) and Leo (Abell 1367) clusters, and one galaxy group, the NGC 4555 group, providing an ideal laboratory to study how galaxies evolve depending on environment. We present the results of a study for MIR properties of galaxies in the Coma supercluster using multi-wavelength data from the optical to MIR including the Sloan Digital Sky Survey Data Release 12 and the Wide-field Infrared Survey Explorer. We investigate differences in MIR properties of galaxies among three galaxy systems, and discuss the results in relation with star formation history and morphological transformation of galaxies.

  • PDF

Recent Star Formation History of M31 and M33

  • Kang, Yongbeom;Bianchi, Luciana;Rey, Soo-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2013
  • We studied recent evolution of M31 and M33 with star-forming regions and hot massive stars. We use GALEX far-UV and near-UV imaging to detect the star-forming regions and trace the recent star formation across the entire disk of galaxies. The GALEX imaging, combining deep sensitivity and entire coverage of these galaxies, provides a complete picture of the recent star formation in M31 and M33, and its variation with environment throughout these galaxies. We also show results from recent extensive surveys in M31 and M33 with Hubble Space Telescope multi-wavelength data including UV filters, which imaged several regions at a linear resolution of less than half a pc in these galaxies. Both datasets allow us to study the hierarchical structure of star formation: the youngest stellar groups are the most compact, and are often arranged withing broader, sparser structures. The derived recent star-formation rates are rather similar for the two galaxies, when scaled for the respective areas.

  • PDF

COMPARISON OF PHYSICAL PROPERTIES AND EVOLUTION OF AKARI AND SPITZER 24 ㎛-DETECTED GALAXIES AT z = 0.4 - 2

  • Fujishiro, Naofumi;Hanami, Hitoshi;Ishigaki, Tsuyoshi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.313-315
    • /
    • 2017
  • We present physical properties of $24{\mu}m$ galaxies detected by AKARI and Spitzer and their evolution between redshifts 0.4 < z < 2. Using multi-wavelength data from X-ray to radio observations in NEP Deep Field (for AKARI) and Subaru/XMM-Newton Deep Field (for Spitzer), we derive photometric redshift, stellar mass, star-formation rate (SFR), dust extinction magnitude and rest-frame luminosities/colors of the $24{\mu}m$ galaxies from photometric SED fitting. We infer the SFRs from rest-frame ultraviolet luminosity and total infrared luminosity calibrated against Herschel photometric data. For both survey fields, we obtain complete samples with stellar mass of > $10^{10}M_{\odot}$ and SFR of > $30M_{\odot}/yr$ up to z = 2. We find that specific SFRs evolves with redshift at all stellar masses in NON-power-law galaxies (non-PLGs) as star-formation dominant luminous infrared galaxies (LIRGs). The correlations between specific SFR and stellar mass in the Spitzer and AKARI galaxy samples are well consistent with trends of the main sequence galaxies. We also discuss nature of PLGs and their evolution.

Diagnostics to Probe Environmental Effects on Late-type Galaxies in the Virgo Cluster

  • Yoon, Hyein;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • We investigate 53 late-type galaxies in Virgo to get better understanding galaxy evolution driven by environmental effects in the cluster. The goal is to study how galaxies are strongly affected gravitationally by their surroundings and/or how interstellar medium (ISM) of galaxies changes through the interaction with intracluster medium (ICM). To quantify these, a variety of diagnostic methods have been introduced. Our diagnostics have two different perspectives. First, we have carefully examined the morphological and kinematical properties of individual galaxies using high resolution HI images and compared with multi-wavelength data. Based on the visual inspection, we have identified signatures of the interactions with other galaxies or the ICM. Second, we have quantified influence of local environments of individual galaxies using X-ray data and optical catalog of the cluster. By combining all the diagnostics, we have identified the environmental effect(s) at work on individual galaxies. We also probe the environmental processes as a function of the cluster centric distance. Various gravitational interactions are found throughout the cluster, while the ICM-ISM interaction is mainly dominant near the cluster center. However, we find some evidence that galaxies start losing their gas already in the low density outskirts of the cluster.

  • PDF

AKARI Observation of the North Ecliptic Pole (NEP) Supercluster at z=0.087

  • Ko, Jong-Wan;Im, Myung-Shin;AKARINEP-Wideteam, AKARINEP-Wideteam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2010
  • We present a multi-wavelength study of a supercluster in the NEP region at z=0.087, using AKARI (Infrared space telescope) NEP-Wide (5.8 deg2) survey which has obtained an unique IR imaging dataset with contiguous wavelength coverage from 2 to $24{\mu}m$, overcoming the Spitzer limitation of imaging capability at $10-20{\mu}m$. The NEP-Wide survey is also covered in other wavelength such as X-ray, Radio, GALEX UV in the archive, optical (BRI from Maidanak 1.5m and CFHT's MegaPrime), and NIR imaging data (JH from KPNO 2.1m), with nearly 1900 optical spectra, mostly obtained by our group using MMT/Hectospec and WIYN/Hydra. Armed with the multiwavelength datasets, we investigate the connection between IR properties of galaxies and their environments as a tool to understand the evolution of galaxies in a supercluster environment. Specific attention will be given to MIR emission which can trace star formation activities and passive phases right after post-starbursts, and its relation to other wavelength data.

  • PDF

The main sequence of star forming galaxies at intermediate redshift

  • Salmi, Fadia
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.71.2-71.2
    • /
    • 2014
  • processes at the origin of the star formation in the galaxies over the last 10 billions years. While it was proposed in the past that merging of galaxies has a dominant role to explain the triggering of the star formation in the distant galaxies having high star formation rates. In the opposite, more recent studies revealed scaling laws linking the star formation rate in the galaxies to their stellar mass or their gas mass. The small dispersion of these laws seems to be in contradiction with the idea of powerful stochastic events due to interactions, but rather in agreement with the new vision of galaxy history where the latter are continuously fed by intergalactic gas. I was especially interested in one of this scaling law, the relation between the star formation (SFR) and the stellar mass (M*) of galaxies, commonly called the main sequence of star forming galaxies. I have studied this main sequence, SFR-M*, in function of the morphology and other physical parameters as the radius, the colour, the clumpiness. The goal was to understand the origin of the sequence's dispersion related to the physical processes underlying this sequence in order to identify the main mode of star formation controlling this sequence. This work needed a multi-wavelength approach as well as the use of galaxies profile simulation to distinguish between the different galaxy morphological types implied in the main sequence.

  • PDF