DOI QR코드

DOI QR Code

COMPARISON OF PHYSICAL PROPERTIES AND EVOLUTION OF AKARI AND SPITZER 24 ㎛-DETECTED GALAXIES AT z = 0.4 - 2

  • Received : 2015.07.20
  • Accepted : 2016.10.20
  • Published : 2017.03.31

Abstract

We present physical properties of $24{\mu}m$ galaxies detected by AKARI and Spitzer and their evolution between redshifts 0.4 < z < 2. Using multi-wavelength data from X-ray to radio observations in NEP Deep Field (for AKARI) and Subaru/XMM-Newton Deep Field (for Spitzer), we derive photometric redshift, stellar mass, star-formation rate (SFR), dust extinction magnitude and rest-frame luminosities/colors of the $24{\mu}m$ galaxies from photometric SED fitting. We infer the SFRs from rest-frame ultraviolet luminosity and total infrared luminosity calibrated against Herschel photometric data. For both survey fields, we obtain complete samples with stellar mass of > $10^{10}M_{\odot}$ and SFR of > $30M_{\odot}/yr$ up to z = 2. We find that specific SFRs evolves with redshift at all stellar masses in NON-power-law galaxies (non-PLGs) as star-formation dominant luminous infrared galaxies (LIRGs). The correlations between specific SFR and stellar mass in the Spitzer and AKARI galaxy samples are well consistent with trends of the main sequence galaxies. We also discuss nature of PLGs and their evolution.

Keywords

References

  1. Bolzonella, M., Miralles, J. -M., Pello, R., 2000, Photometric Redshifts based on standard SED fitting procedures, A&A, 363, 476
  2. Brammer, G. B., van Dokkum, P. G., Coppi, P., 2008, EAZY: A Fast, Public Photometric Redshift Code, ApJ, 686, 1503 https://doi.org/10.1086/591786
  3. Bruzual, G. & Charlot, S., 2003, Stellar population synthesis at the resolution of 2003, MNRAS, 344, 1000 https://doi.org/10.1046/j.1365-8711.2003.06897.x
  4. Daddi, E., Dickinson, M., Elbaz, D., 2007, Multiwavelength Study of Massive Galaxies at z-2. I. Star Formation and Galaxy Growth, ApJ, 670, 156 https://doi.org/10.1086/521818
  5. Donley, J. L., Koekemoer, A. M., Brusa, M., et al., 2012, Identifying Luminous Active Galactic Nuclei in Deep Surveys: Revised IRAC Selection Criteria, ApJ, 748, 142 https://doi.org/10.1088/0004-637X/748/2/142
  6. Furusawa, H., Kosugi, G., Akiyama, M., et al., 2008, The Subaru/XMM-Newton Deep Survey (SXDS). II. Optical Imaging and Photometric Catalogs, ApJS, 176, 1 https://doi.org/10.1086/527321
  7. Hanami, H., Ishigaki, T., Fujishiro, N., et al., 2012, Star Formation and AGN Activity in Galaxies Classified Using the $1.6{\mu}m$ Bump and PAH Features at z = 0.4-2, PASJ, 64, 70 https://doi.org/10.1093/pasj/64.4.70
  8. Kennicutt, R. C., 1998, Star Formation in Galaxies Along the Hubble Sequence, ARA&A, 36, 189 https://doi.org/10.1146/annurev.astro.36.1.189
  9. Madau, P. & Dickinson, M., 2014, Cosmic Star-Formation History, ARA&A,52,415 https://doi.org/10.1146/annurev-astro-081811-125615
  10. Siebenmorgen, R. & Krugel, E., 2007, Dust in starburst nuclei and ULIRGs. SED models for observers, A&A, 461, 445 https://doi.org/10.1051/0004-6361:20065700
  11. Rujopakarn W., Rieke, G. H., Weiner, B. J., 2013, Mid-Infrared Determination of Total Infrared Luminosity and Star Formation Rates of Local and High-Redshift Galaxies, ApJ, 767, 73 https://doi.org/10.1088/0004-637X/767/1/73