• 제목/요약/키워드: Galaxies: intergalactic medium

검색결과 26건 처리시간 0.024초

The WSRT HI Imaging Study of Gas-rich Galaxies in the Outskirts of the Virgo Cluster

  • Yoon, Hyein;Chung, Aeree;Sengupta, Chandreyee;Wong, O. Ivy;Bureau, Martin;Rey, Soo-Chang;van Gorkom, J.H.
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.76.2-76.2
    • /
    • 2015
  • We present the results of the Westerbork Synthesis Radio Telescope (WSRT) HI imaging study of seven late-type galaxies. They are located in the outskirts of the Virgo cluster, possibly along a filament connected to Virgo from the north-west. Most galaxies in this region are found to be HI-rich, containing more HI gas compared to field galaxies with similar size and optical luminosity. The positions of the sample with respect to the cluster and their high HI mass-to-light ratios suggest that the selected galaxies might be accreting more gas from their surroundings while falling into the cluster. By high-resolution HI imaging, we aim to find evidence that galaxies are pre-processed by gas accretion from the intergalactic medium and/or gas-rich neighbors. We probe the detailed HI morphology/kinematics and the star formation properties of the sample. All of these galaxies are found with a large HI disk which is quite extended compared to their stellar disk. Together with kinematical peculiarities, this strongly suggests that cold gas accretion is responsible for active star formation in these galaxies.

  • PDF

X-RAY STUDIES OF THE INTRACLUSTER MEDIUM IN CLUSTERS OF GALAXIES - CHARACTERIZING GALAXY CLUSTERS AS GIANT LABORATORIES

  • BOHRINGER HANS
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.361-369
    • /
    • 2004
  • Galaxy clusters as the densest and most prominent regions within the large-scale structure can be used as well characterizable laboratories to study astrophysical processes on the largest scales. X-ray observations provide currently the best way to determine the physical properties of galaxy clusters and the environmental parameters that describe them as laboratories. We illustrate this use of galaxy clusters and the precision of our understanding of them as laboratory environments with several examples. Their application to determine the matter composition of the Universe shows good agreement with results from other methods and is therefore a good test of our understanding. We test the reliability of mass measurements and illustrate the use of X-ray diagnostics to study the dynamical state of clusters. We discuss further studies on turbulence in the cluster ICM, the interaction of central AGN with the radiatively cooling plasma in cluster cooling cores and the lessons learned from the ICM enrichment by heavy elements.

HIGH REDSHIFT QUASAR SURVEY WITH IMS

  • JEON, YISEUL;IM, MYUNGSHIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.405-407
    • /
    • 2015
  • We describe a survey of quasars in the early universe, beyond z ~ 5, which is one of the main science goals of the Infrared Medium-deep Survey (IMS) conducted by the Center for the Exploration of the Origin of the Universe (CEOU). We use multi-wavelength archival data from SDSS, CFHTLS, UKIDSS, WISE, and SWIRE, which provide deep images over wide areas suitable for searching for high redshift quasars. In addition, we carried out a J-band imaging survey at the United Kingdom InfraRed Telescope with a depth of ~23 AB mag and survey area of ${\sim}120deg^2$, which makes IMS a suitable survey for finding faint, high redshift quasars at z ~ 7. In addition, for the quasar candidates at z ~ 5.5, we are conducting observations with the Camera for QUasars in EArly uNiverse (CQUEAN) on the 2.1m telescope at McDonald Observatory, which has a custom-designed filter set installed to enhance the efficiency of selecting robust quasar candidate samples in this redshift range. We used various color-color diagrams suitable for the specific redshift ranges, which can reduce contaminating sources such as M/L/T dwarfs, low redshift galaxies, and instrumental defects. The high redshift quasars we are confirming can provide us with clues to the growth of supermassive black holes since z ~ 7. By expanding the quasar sample at 5 < z < 7, the final stage of the hydrogen reionization in the intergalactic medium (IGM) can also be fully understood. Moreover, we can make useful constraints on the quasar luminosity function to study the contribution of quasars to the IGM reionization.

THE VELOCITY INHOMOGENEITY IN THE COMA CLUSTER OF GALAXIES

  • KIM KWANG TAE
    • 천문학회지
    • /
    • 제28권1호
    • /
    • pp.15-30
    • /
    • 1995
  • A velocity inhomogeneity, which is defined as a regional preponderence of either radial or tangential orbits, is searched with a new technique for the Coma cluster of galaxies. It is found within $\~2h^{-1}$ Mpc from the cluster center that the Coma shows conspicuous inhomogeneities in velocity and that the inhomogeneities are real at a $99\%$ level of confidence. Even in the central region (7' - 30' from the center), zones that are dominated by radial and tangential orbits are distinguishable. Defining the cluster's 'equator' as the direction defined by the Coma-A1367 supercluster, tangential orbits dominate the 'polar' zones in the central region. Galaxies that are located in 30'-100' also inhomogeneous in velocity in that the 'polar' zones are mostly radial while the rest is nearly homogeneous. These results indicate that the Coma galaxies are exceedingly more radial in orbit, implying that merging or infalls are either still going on or an earlier virialization is likely to have occurred preferentially near the 'equator'. Incorporating the velocity inhomogeneity into mass estimators, the most appropriate mass is turned out to be $0.4\times10^{15}h^{-1}M_\bigodot(R\;\leq\;0.6h^{-1} Mpc),\;and\;1.0\times10^{15}h^{-1} M_\bigodot(R\;\leq\;2.1h^{-1}Mpc)$. The corresponding mass to blue light ratio on the average is $\~$300h. These estimates are consistent with Merritt (1987) and Hughes (1989) and the MILE is seemed to favour the mass-follows-light models than the uniform spread of dark matter throughout the cluster.

  • PDF

THE KRAMERS-HEISENBERG FORMULA AND THE GUNN-PETERSON TROUGH

  • Bach, Kiehunn;Lee, Hee-Won
    • 천문학회지
    • /
    • 제47권5호
    • /
    • pp.187-193
    • /
    • 2014
  • Recent cosmological observations indicate that the reionized universe may have started at around z = 6, where a significant suppression around $Ly{\alpha}$ has been observed from the neutral intergalactic medium. The associated neutral hydrogen column density is expected to exceed $10^{21}cm^{-2}$, where it is very important to use the accurate scattering cross section known as the Kramers-Heisenberg formula that is obtained from the fully quantum mechanical time-dependent second order perturbation theory. We present the Kramers-Heisenberg formula and compare it with the formula introduced in a heuristic way by Peebles (1993) considering the hydrogen atom as a two-level atom, from which we find a deviation by a factor of two in the red wing region far from the line center. Adopting a representative set of cosmological parameters, we compute the Gunn-Peterson optical depths and absorption profiles. Our results are quantitatively compared with previous work by Madau & Rees (2000), who adopted the Peebles approximation in their radiative transfer problems. We find deviations up to 5 per cent in the Gunn-Peterson transmission coefficient for an accelerated expanding universe in the red off-resonance wing part with the rest wavelength ${\Delta}{\lambda}{\sim}10{\AA}$.

BLACK HOLE-IGM FEEDBACK, AND LINKS TO IGM FIELDS AND CR'S

  • KRONBER PHILIPP P.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.501-507
    • /
    • 2004
  • The uniquely large dimensions of Giant radio galaxies (GRGs) make it possible to probe for stringent limits on total energy content, Faraday rotation, Alfven speeds, particle transport and radiation loss times. All of these quantities are more stringently limited or specified for GRG's than in more 'normal' FRII radio sources. I discuss how both global and detailed analyses of GRG's lead to constraints on the CR electron acceleration mechanisms in GRG's and by extension in all FRII radio sources. The properties of GRG's appear to rule out large scale Fermi-type shock acceleration. The plasma parameters in these systems set up conditions that are favorable for magnetic reconnection, or some other very efficient process of conversion of magnetic to particle energy. We conclude that whatever mechanism operates in GRG's is probably the primary extragalactic CR acceleration mechanism in the Universe.

THE $^{13}CO$ DISTRIBUTION AND CORRELATION WITH EXTINCTION IN L134

  • MINN YOUNG KEY;LEE HYE KYUNG
    • 천문학회지
    • /
    • 제29권1호
    • /
    • pp.75-81
    • /
    • 1996
  • We mapped the $^{13}CO$ line in the dark nebula L134 using the 14-m Taeduck radio telescope with a 57 arcsec beam and one beam spacing. The cloud has a spherical shape with an intensity peak ridge extended from the northwest to the southeast directions. The halfwidth and the radial velocity of the lines peak at the region of the cloud center. The radial velocity decreases from the cloud center towards the north and south directions. The integrated line intensity distributions in the space-velocity plane show some structure and a velocity gradient. The $^{13}CO$ and $H_2CO$ clouds and dark clouds are closely related in space in shape, outer boundary, and intensity peak positions. The $^{13}CO$ integrated line intensity is linearly proportional to the visual extinction.

  • PDF

EUV AND SOFT X-RAY EMISSION IN CLUSTERS OF GALAXIES

  • BOWYER STUART
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.295-297
    • /
    • 2004
  • Observations with EUVE, ROSAT, and BeepoSAX have shown that some clusters of galaxies produce intense EUV emission. These findings have produced considerable interest; over 100 papers have been published on this topic in the refereed literature. A notable suggestion as to the source of this radiation is that it is a 'warm' (106 K) intracluster medium which, if present, would constitute the major baryonic component of the universe. A more recent variation of this theme is that this material is 'warm-hot' intergalactic material condensing onto clusters. Alternatively, inverse Compton scattering of low energy cosmic rays against cosmic microwave background photons has been proposed as the source of this emission. Various origins of these particles have been posited, including an old (${\~}$Giga year) population of cluster cosmic rays; particles associated with relativistic jets in the cluster; and cascading particles produced by shocks from sub-cluster merging. The observational situation has been quite uncertain with many reports of detections which have been subsequently contradicted by analyses carried out by other groups. Evidence supporting a thermal and a non-thermal origin has been reported. The existing EUV, FUV, and optical data will be briefly reviewed and clarified. Direct observational evidence from a number of different satellites now rules out a thermal origin for this radiation. A new examination of subtle details of the EUV data suggests a new source mechanism: inverse Compton scattered emission from secondary electrons in the cluster. This suggestion will be discussed in the context of the data.

TURBULENCE IN THE OUTSKIRTS OF THE MILKY WAY

  • Sanchez-Salcedo, F.J.;Santillan, A.;Franco, Jose
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.171-177
    • /
    • 2007
  • In external galaxies, the velocity dispersion of the atomic hydrogen gas shows a remarkably flat distribution with the galactocentric radius. This has been a long-standing puzzle because if the gas velocity dispersion is due to turbulence caused by supernova explosions, it should decline with radius. After a discussion on the role of spiral arms and ram pressure in driving interstellar turbulence in the outer parts of galactic disks, we argue that the constant bombardment by tiny high-velocity halo clouds can be a significant source of random motions in the outer disk gas. Recent observations of the flaring of H I in the Galaxy are difficult to explain if the dark halo is nearly spherical as the survival of the streams of tidal debris of Sagittarius dwarf spheroidal galaxy suggests. The radial enhancement of the gas velocity dispersion (at R > 25 kpc) due to accretion of cloudy gas might naturally explain the observed flaring in the Milky Way. Other motivations and implications of this scenario have been highlighted.

Investigating X-ray cavities and the environmental effects

  • Shin, Jaejin;Woo, Jong-Hak;Mulchaey, John S.
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.34.2-34.2
    • /
    • 2016
  • X-ray cavities are typically detected as surface brightness depression in X-ray diffuse emission from hot gas in high resolution X-ray images (i.e., Chandra and XMM-Newton). Showing the coincidence of location with radio jets, X-ray cavities imply that the radio jets interact with interstellar/intergalactic medium. It is important to understand them since they can be a clue of understanding AGN feedback to their host galaxies. To understand the physics of the AGN feedback, X-ray cavity has been actively studied while there are only a few statistical studies on X-ray cavity based on small or incomplete samples. Hence, a systematic study with a large sample is needed. With the condition of sufficient X-ray photons to detect surface brightness depression, we constructed a large sample of 133 galaxy clusters, galaxy groups, and individual galaxies to investigate X-ray cavities. We detected 201 cavities from 94 objects using two detection methods (i.e., beta-modeling and unsharp masking method), and confirmed the cavity size-distance relation over a large dynamical range. The size-distance relation does not vary for different environments (i.e., galaxy cluster, groups, and individual galaxies), suggesting that there is little environmental effect on the formation of X-ray cavity.

  • PDF