THE VELOCITY INHOMOGENEITY IN THE COMA CLUSTER OF GALAXIES

  • KIM KWANG TAE (Department of Astronomy and Space Science, Chungnam National University)
  • Published : 1995.04.01

Abstract

A velocity inhomogeneity, which is defined as a regional preponderence of either radial or tangential orbits, is searched with a new technique for the Coma cluster of galaxies. It is found within $\~2h^{-1}$ Mpc from the cluster center that the Coma shows conspicuous inhomogeneities in velocity and that the inhomogeneities are real at a $99\%$ level of confidence. Even in the central region (7' - 30' from the center), zones that are dominated by radial and tangential orbits are distinguishable. Defining the cluster's 'equator' as the direction defined by the Coma-A1367 supercluster, tangential orbits dominate the 'polar' zones in the central region. Galaxies that are located in 30'-100' also inhomogeneous in velocity in that the 'polar' zones are mostly radial while the rest is nearly homogeneous. These results indicate that the Coma galaxies are exceedingly more radial in orbit, implying that merging or infalls are either still going on or an earlier virialization is likely to have occurred preferentially near the 'equator'. Incorporating the velocity inhomogeneity into mass estimators, the most appropriate mass is turned out to be $0.4\times10^{15}h^{-1}M_\bigodot(R\;\leq\;0.6h^{-1} Mpc),\;and\;1.0\times10^{15}h^{-1} M_\bigodot(R\;\leq\;2.1h^{-1}Mpc)$. The corresponding mass to blue light ratio on the average is $\~$300h. These estimates are consistent with Merritt (1987) and Hughes (1989) and the MILE is seemed to favour the mass-follows-light models than the uniform spread of dark matter throughout the cluster.

Keywords