• Title/Summary/Keyword: Gait performance

Search Result 263, Processing Time 0.027 seconds

The Effect of Modified Reverse-Six Taping on the Balance and Gait Performance in Pes Planus - Pilot study (수정된 리버스 식스 테이핑 적용이 편평족의 균형과 보행에 미치는 영향 - 사전연구)

  • Yang, Seong-hwa;Shin, Young-il;Lee, Jun-young
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Background: The purpose of this study was to investigate the effect of modified reverse-six taping on the balance and gait performance in Pes Planus. Methods: A total of twelve subjects (4 males, 8 females) in Pes Planus participated in this study. Navicular drop test was used to evaluate Pes Planus. Balance performance(anterior-posterior; A-P, medial-lateral; M-L), overall) was evaluated using the Biodex balance system in two difference condition(no-taping, with reverse-six taping). Gait performance (cadence, velocity) was evaluated using GAITRite System in two difference condition (no-taping, with reverse-six taping). Results: There were significant improvements of A-P and overall in the balance performance after using reverse-six taping (p<.05). there was no significant improvements of M-L balance performance. and, there were no statistical difference of cadence and velocity in the gait performance after using reverse-six taping. Conclusions: This study found that modified reverse-six taping in Pes Planus was improve the balance performance. but dose not affect the gait performance.

  • PDF

Robotic-assisted gait training applied with guidance force for balance and gait performance in persons with subacute hemiparetic stroke

  • Son, Dong-Wook;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.3
    • /
    • pp.106-112
    • /
    • 2017
  • Objective: Robot assisted gait training is implemented as part of therapy for the recovery of gait patterns in recent clinical fields, and the scope of implications are continuously increasing. However clear therapy protocols of robot assisted gait training are insufficent. The purpose of this study was to investigate the effects of robot-assisted gait training applied with guidance force on balance and gait performance in persons with hemiparetic stroke. Design: Two group pre-test post-test design. Methods: Nineteen persons were diagnosed with hemiparesis following stroke participated in this study. The participants were randomly assigned to the unilateral guidance group or bilateral guidance group to conduct robot-assisted gait training. All participants underwent robot-assisted gait training for twelve sessions (30 min/d, 3 d/wk for 4 weeks). They were assessed with gait parameters (gait velocity, cadence, step length, stance phase, and swing phase) using Optogait. This study also measured the dynamic gait index (DGI), the Berg balance scale (BBS) score, and timed up and go (TUG). Results: After training, BBS scores were was significantly increased in the bilateral training group than in the unilateral guidance group (p<0.05). Spatiotemporal parameters were significantly changed in the bilateral training group (gait speed, swing phase ratio, and stance phase ratio) compared to the unilateral training group (p<0.05). Conclusions: The results of this study suggest that robot-assisted gait training show feasibility in facilitating improvements in balance and gait performance for subacute hemiparetic stroke patients.

Combined Effect of Joint Mobilization and Active Stretching on Gait Speed and Ability after Stroke

  • Go, Junhyeok;An, Hojung
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.2
    • /
    • pp.2359-2364
    • /
    • 2021
  • Background: Patients with stroke have limited ankle range of motion (ROM) due to soft tissue abnormalities around the ankle and thus experience functional impairment. Increased muscle tension and reduced ankle ROM impair gait and hinder the activities of daily living. Joint mobilization and stretching are effective interventions that improve gait performance by enhancing the ankle ROM. Objectives: To investigate the effects of ankle joint mobilization and calf muscle stretching on gait speed and gait performance in patients with stroke. Design: This was a randomized controlled trial. Methods: Twenty patients with stroke patients were randomized into two groups. The joint mobilization group (JMG) underwent anteroposterior mobilization of the talocrural joint and the joint mobilization stretching group (JMSG) underwent calf muscle stretching in addition to joint mobilization. Gait speed and gait parameters were measured using the 10-meter walk test and the GAITRite. Results: Both the JMG and JMSG groups showed significant improvements in gait speed, affected-side step length, and cadence after the intervention (P<.05). Conclusion: Joint mobilization and stretching were effective interventions for improving gait performance by enhancing ankle function in patients with stroke.

Spatiotemporal Gait Parameters That Predict the Tinetti Performance-Oriented Mobility Assessment in People With Stroke

  • Jeong, Yeon-gyu;Kim, Jeong-soo
    • Physical Therapy Korea
    • /
    • v.22 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • The purpose of this study was to find which spatiotemporal gait parameters gained from stroke patients could be predictive factors for the gait part of Tinetti Performance-Oriented Mobility Assessment (POMA-G). Two hundred forty-six stroke patients were recruited for this study. They participated in two assessments, the POMA-G and computerized spatiotemporal gait analysis. To analyze the relationship between the POMA-G and spatiotemporal parameters, we used Pearson's correlation coefficients. In addition, multiple linear regression analyses (stepwise method) were used to predict the spatiotemporal gait parameters that correlated most with the POMA-G. The results show that the gait velocity (r=.67, p<.01), cadence (r=.66, p<.01), step length of the affected side (r=.49, p<.01), step length of the non-affected side (r=.53, p<.01), swing percentage of the non-affected side (r=.47, p<.01), and single support percentage of the affected side (r=.53, p<.01) as well as the double support percentage of the non-affected side (r=-.42, p<.01) and the step-length asymmetry (r=-.64, p<.01) correlated with POMA-G. The gait velocity, step-length asymmetry, cadence, and single support percentage of the affected side explained 67%, 2%, 2%, and 1% of the variance in the POMA-G, respectively. In conclusion, gait velocity would be the most predictive factor for the POMA-G.

A Systematic Review of the Effects of Robotic-Assisted Training on Gait Performance in Persons with Subacute Hemiparetic Stroke (아급성 편마비 뇌졸중 환자의 보행에 로봇-보조훈련이 미치는 영향에 관한 체계적 고찰)

  • Se-in Park;Su-jin Hwang
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Purpose: This systematic review aims to determine whether robot-assisted training is more effective in gait training for persons with subacute hemiparetic stroke. Methods: This study adopted a systematic review study design focused on subacute hemiparetic stroke, and four core academic databases were searched until June 11, 2021, for relevant studies, including PubMed, Embase, the Cochrane Library, and ProQuest Central. The review included randomized controlled trials (RCTs) evaluating the effects of robotic-assisted training on gait performance in persons with a diagnosis of subacute hemiparetic stroke. The selected RCT studies were qualitatively synthesized based on the population, intervention, comparison, outcome, settings, and study design (PICOS-SD). Results: The study selected five RCTs involving 253 subacute hemiparetic stroke patients and performing robotic-assisted gait training using the following devices: the Lokomat, Morning Walk, Walkbot, ProStep Plus, or Gait Trainer II. Five RCTs were eligible for the meta-analysis after quantitative synthesis, and the results showed that the robot-assisted gait training group had a greater gait performance than the control group based on the 10-meter walk test, Berg balance scale, Rivermed mobility index, functional ambulation category, and modified Barthel index. Conclusion: The results of this study showed that the gait performance of subacute hemiparetic stroke patients changes throughout robot-assisted gait training, but there were no indications that any of the clinically relevant effects of robot-assisted training are greater than those of conventional gait training. Further, the small sample size and different therapeutic intensities indicate that definitive conclusions could not be made.

Gait-Event Detection for FES Locomotion (FES 보행을 위한 보행 이벤트 검출)

  • Heo Ji-Un;Kim Chul-Seung;Eom Gwang-Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.170-178
    • /
    • 2005
  • The purpose of this study is to develop a gait-event detection system, which is necessary for the cycle-to-cycle FES control of locomotion. Proposed gait event detection system consists of a signal measurement part and gait event detection part. The signal measurement was composed of the sensors and the LabVIEW program for the data acquisition and synchronization of the sensor signals. We also used a video camera and a motion capture system to get the reference gait events. Machine learning technique with ANN (artificial neural network) was adopted for automatic detection of gait events. 2 cycles of reference gait events were used as the teacher signals for ANN training and the remnants ($2\sim5$ cycles) were used fur the evaluation of the performance in gait-event detection. 14 combinations of sensor signals were used in the training and evaluation of ANN to examine the relationship between the number of sensors and the gait-event detection performance. The best combinations with minimum errors of event-detection time were 1) goniometer, foot-switch and 2) goniometer, foot-switch, accelerometer x(anterior-posterior) component. It is expected that the result of this study will be useful in the design of cycle-to-cycle FES controller.

Comparison of the Functional Ambulation Performance Scores of Senior Adults With or Without a History of Falls (낙상 경험 유무에 따른 노인의 기능적 보행성취도 점수(FAP score) 비교)

  • Kwon, Hyuk-Cheol;Kong, Jin-Yong
    • Physical Therapy Korea
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2003
  • The purpose of the study was to determine if there was a difference in the Functional Ambulation Performance score of senior adults with or without a history of falls during walking at a preferred velocity. Twelve subjects with a history of falling (mean age=73.8) and eight subjects with no history of falling (mean age=70.4) participated in the study. Temporal and spatial parameters of gait were analyzed using the computerized GAITRite system. The GAITRite system integrates specific components of locomotion to provide a single, numerical representation of gait, the Functional Ambulation Performance score. The Functional Ambulation Performance score is a Quantitative means of assessing gait based on specific temporal and spatial parameters. Statistical analysis of the two groups demonstrated a significant decrease in Functional Ambulation Performance score for those with a history of falls. They had lower values for step/extremity ratios, mean normalized velocity, and greater values for step times, percent in double support. These results indicate that the GAITRite system can be useful in detecting footfall patterns and selected time and distance measurements of persons with a history of falls and the Functional Ambulation Performance score can be used as indicators of gait performance for senior adults with a history of falls.

  • PDF

Gait Type Classification Using Pressure Sensor of Smart Insole

  • Seo, Woo-Duk;Lee, Sung-Sin;Shin, Won-Yong;Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2018
  • In this paper, we propose a gait type classification method based on pressure sensor which reflects various terrain and velocity variations. In order to obtain stable gait classification performance, we divide the whole gait data into several steps by detecting the swing phase, and normalize each step. Then, we extract robust features for both topographic variation and speed variation by using the Null-LDA(Null-Space Linear Discriminant Analysis) method. The experimental results show that the proposed method gives a good performance of gait type classification even though there is a change in the gait velocity and the terrain.

Effects of ball kicking dual task training on gait performance and balance in individuals with chronic hemiparetic stroke

  • Kim, Minseong;Shim, Jaehun;Yu, Kyunghoon;Kim, Jiwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.4
    • /
    • pp.170-176
    • /
    • 2016
  • Objective: The purpose of this study was to compare the effect of ball kicking dual task gait training with the addition of a cognitive task with general treadmill gait training (TGT) on gait speed, gait endurance, functional gait, balance and balance confidence in patients with chronic hemiparetic stroke. Design: Randomized controlled trial. Methods: Fourteen stroke patients who volunteered to participate in this study were randomly divided into two groups with seven patients in each group: ball kicking dual task training (DTT) group and TGT group. The DTT group received ball kicking DTT with cognitive tasks consisted of three stages and the TGT group received TGT using normal walking speed, respectively, for 30 minutes per day 3 days per week for 4 weeks. Outcome assessments were made with the 10-meter walking test (10MWT), 6-minute walking test (6MWT), functional gait assessment (FGA), Berg balance scale (BBS), timed up and go test (TUG), and the activities-specific balance confidence (ABC) scale. Results: The DTT group showed more significant improvement in the 10MWT, 6MWT, FGA, BBS, TUG, and ABC than the TGT group (p<0.05). In addition, within groups comparison showed significant improvement in all variables (p<0.05). Conclusions: The findings suggest that both ball kicking dual task gait training and TGT improve gait performance and balance in patients with chronic hemiparetic stroke. However, ball kicking dual task gait training results showed more favorable outcomes than TGT for chronic hemiparetic stoke patients.

Relationship Between Gait Symmetry and Functional Balance, Walking Performance in Subjects with Stroke (뇌졸중 환자의 보행 대칭성과 기능적 균형 및 보행과의 상관관계 연구)

  • Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Purpose: The aim of the present study was to understand the relationship between gait symmetry and functional balance, walking performance in stroke patients and to makes recommendation regarding the most suitable measure for standardization of expression of spatiotemporal gait symmetry. Methods: 45 subjects with stroke (31 men, 14 women, $57.3{\pm}10.3$ years old) participated in this study. Gait symmetry was calculated by equations of symmetry ratio (SR) and symmetry criterion (SC) for stance time, swing time, single leg support time (SLST), step length, and stride length. Spatiotemporal parameters were measured respectively by walkway system ($GAITRite^{TM}$ system). Limit of stability (LOS) by using forceplate (Balance Performance Monitor) during voluntary weight displacement and Berg Balance Scale (BBS) were measured as functional balance and Timed Up and Go test (TUG) and Functional Ambulation Category (FAC) were assessed as functional walking. Results: SR in stance time and swing time was correlation with BBS, TUG and FAC (p<0.05). SR in SLST only with BBS (p<0.01), SR in step length only with FAC (p<0.05). SC in stance time was correlation with BBS and TUG (p<0.05). SC in swing time and SLST with BBS, TUG and FAC (p<0.01), SC in step length with TUG and FAC (p<0.01), SC in stride length with BBS and FAC (p<0.01). Conclusion: Gait symmetry in spatiotemporal gait parameters provides meaningful information about functional balance and walking performance in stroke subjects. Our analysis may support the recommendations of the symmetry criterion as equation for standardization of gait symmetry.