• Title/Summary/Keyword: Gait parameters

Search Result 341, Processing Time 0.022 seconds

Effect of foam roller, kinesiotaping and dynamic stretching on gait parameters with induced ankle muscle fatigue

  • Suh, Hye Rim;Lee, Su-Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.3
    • /
    • pp.127-133
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effects of foam roller (FR) stretching, kinesiotaping (KT), and dynamic stretching (DS) on gait parameters after inducing muscle fatigue in the ankle joint. Design: Cross-sectional study. Methods: The subjects were thirty healthy young adults between the ages of 20 and 31 years at Baekseok University who voluntarily participated in this study. The participants were randomly assigned to either the FR group, KT group, or the DS group after inducing muscle fatigue of the ankle joint. Fatigue induction of the ankle joint muscles was performed by alternating a heel up and down exercise with the standing posture on the ground. The speed was maintained at 40 beats/minute using a metronome. Subsequently, the respective intervention was applied to each group. Gait parameters were measured before and after ankle muscle fatigue induction, and after intervention using the GAITRite system. One-way ANOVA was used to compare gait parameters among groups, while repeated measures ANOVA was used to compare gait parameters within each intervention group. Results: The FR group increased significantly in velocity, step length, and stride length except for cadence after intervention compared to after ankle muscle fatigue induction (p<0.01). Furthermore, the KT group showed significant increases in velocity, cadence, step length, and stride length after intervention, especially in cadence group (p<0.05). All intervention groups showed significant increases in stride length after intervention, especially the DS group (p<0.05). Conclusions: Therefore, we suggest that KT, FR, and DS can be an effective intervention on gait parameters when the ankle joint is unstable and injured.

The Effects of Robot Assisted Gait Training on Kinematic Factors of the Stroke Patients (로봇보조 보행훈련이 뇌졸중 환자의 운동학적 요인에 미치는 효과)

  • Kim, Sung-Chul;Kim, Mi-Kyong;Yang, Dae-Jung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.1
    • /
    • pp.91-99
    • /
    • 2022
  • Purpose : The goal of this study is to examine the effect of robot assisted gait training (RAGT) on the kinematic factors (temporospatial gait parameters, gait cycle ratio, and gait line length) of gait in stroke patients. Methods : The subjects of this study were 24 stroke patients selected by inclusion criteria. Participants were randomly allocated to two groups: robot assisted gait training (n=11) and general neurological physical therapy group (n=11). In the robot-assisted gait training group, robot-assisted gait training was mediated for 30 minutes a day in addition to general neurological physical therapy. The general neurological physical therapy group was mediated by general neurological physical therapy for 30 minutes a day in addition to general neurological physical therapy. The number of interventions was 5 times a week for 5 weeks. In order to compare the kinematic factors of walking between the two groups, gait analysis was performed before and after 5 weeks of training using the Zebris gait analysis system. Results : As a result of the gait analysis of the two groups, there were significant differences in temporospatial gait variables (step length, stride length, step width, step time, stride time), gait cycle ratio (swing phase, stance phase) and gait line length. However, there was no significant difference in the cadence (temporospatial gait parameters) in the robot assisted gait training group compared to general neurological physical therapy group. Conclusion : It is considered to be a useful treatment for stroke patients to promote the recovery of gait function in stroke patients. Based on the results of this study, continuous robot assisted gait training treatment is considered to have a positive effect on gait ability, the goal of stroke rehabilitation. In the future, additional studies should be conducted on many subjects of stroke patients, the kinematic factors of the legs according to the severity of stroke and treatment period, and the effect of gait training.

The effect of visual information on gait parameters with induced ankle muscle fatigue

  • Suh, Hye Rim;Hwang, Jin-Hee;Lee, Su-Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.3
    • /
    • pp.140-145
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the effect of visual block with ankle joint fatigue on gait and dynamic balance ability. Design: Cross-sectional study. Methods: Thirty healthy young adults (men=15, women=15) between 22 to 25 years of age voluntarily participated in this study. All subjects performed the gait and dynamic balance test successively in two conditions: the visual block and the open eyes condition. Before the gait and dynamic balance test, muscle fatigue on the ankle joint was induced to all subjects by doing ankle dorsiflexion and plantarflexion alternately, and then gait parameters (step length, stride length, cadence, velocity, single limb support, and double limb support) were assessed by walking on the GAITRite system (CIR Systems Inc., USA). Subjects also performed the functional reach test (FRT) for assessment of dynamic balance. This study examined gait parameters and FRT scores in each visual block and open eyes condition. Results: The results showed that FRT scores with the visual block condition significantly decreased compared to without visual blocking (p<0.01). Step length, stride length, cadence, and velocity of gait parameters decreased significantly in the visual block condition (p<0.01) while there was no significant difference for single limb support. However, double limb support increased significantly in the visual block system (p<0.01). Conclusions: Therefore, blocking of visual information with muscle fatigue of the ankle joint can affect gait and balance ability of young adults and increase the risk of falls.

Association between Hand Grip Strength and Gait Variability in Elderly: Pilot Study (노인의 악력과 보행 가변성 간의 연관성: 예비연구)

  • Lee, Do-Youn;Lee, Yungon;Shin, Sunghoon
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to establish an association between grip strength and gait variability in the elderly. Methods: The participants in this experiment (n = 20) were aged 65 or older. Power grip and lateral pinch forces were obtained in grip strength tests, and spatiotemporal gait parameters were collected from IMU sensors during 6 min actual walking to test the gait of participants. The collected gait parameters were converted to coefficient of variation (CV) values. To confirm the association between grip strength and gait variability, a partial correlation analysis was conducted in which height, weight, and gait speed were input as controlling variables. Results: Grip power showed a significant negative correlation with the stride length CV (r = -0.52), and the lateral pinch force showed a significant negative correlation with the stance CV (r = -0.65) and swing CV (r = -0.63). Conclusion: This study reveals that gait variability decreases as grip strength increases, although height, weight, and gait speed were controlled. Thus, grip strength testing, a simple aging evaluation method, can help identify unstable gait in older adults at risk of falling, and grip strength can be utilized as a non-invasive measurement method for frailty management and prevention.

Automatic Gait Generation for Quadruped Robot Using a GP Based Evolutionary Method in Joint Space (관절 공간에서의 GP 기반 진화기법을 이용한 4족 보행로봇의 걸음새 자동생성)

  • Seo, Ki-Sung;Hyun, Soo-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.573-579
    • /
    • 2008
  • This paper introduces a new approach to develop a fast gait for quadruped robot using GP(genetic programming). Planning gaits for legged robots is a challenging task that requires optimizing parameters in a highly irregular and multidimensional space. Several recent approaches have focused on using GA(genetic algorithm) to generate gait automatically and shown significant improvement over previous results. Most of current GA based approaches used pre-selected parameters, but it is difficult to select the appropriate parameters for the optimization of gait. To overcome these problems, we proposed an efficient approach which optimizes joint angle trajectories using genetic programming. Our GP based method has obtained much better results than GA based approaches for experiments of Sony AIBO ERS-7 in Webots environment.

Effects of Action Observation Training Combied with Auditory Cueing on Gait Ability in Patients with Stroke: a Preliminary Pilot Study

  • Kim, Hyeong-Min;Son, Sung-Min;Ko, Yu-Min
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.3
    • /
    • pp.98-103
    • /
    • 2022
  • Purpose: New therapeutic approaches have emerged to improve gait ability in patients with brain damage, such as action observation learning (AOT), auditory cueing, motor imagery etc. We attempted to investigate the effects of AOT with auditory cueing (AOTAC) on gait function in patients with stroke. Methods: The eighteen stroke patients with a unilateral hemiparesis were randomly divided into three groups; the AOTAC, AOT, and control groups. The AOTAC group (n=8) received training via observing a video that showed normal gait with sound of footsteps as an auditory cue; the AOT group (n=6) receive action observation without auditory stimulation; the control group (n=5) observed the landscape video image. Intervention time of three groups was 30 minutes per day, five times a week, for four weeks. Gait parameters, such as cadence, velocity, stride length, stance phase, and swing phase were collected in all patients before and after each training session. Results: Significant differences were observed among the three groups with respect to the parameters, such as cadence, velocity, stride length, and stance/swing phase. Post-hoc analysis indicated that the AOTAC group had a greater significant change in all of parameters, compared with the AOT and control groups. Conclusion: Our findings suggest that AOTAC may be an effective therapeutic approach to improve gait symmetry and function in patients with stroke. We believe that this effect is attributable to the change of cortical excitability on motor related to cortical areas.

Effect of Heel Height and Speed on Gait, and the Relationship Among the Factors and Gait Variables

  • Park, Sumin;Park, Jaeheung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2016
  • Objective: This paper investigates gait changes according to different heel heights and speeds, and the interaction between the effects of the heel height and the speed during walking on stride parameters and joint angles. Furthermore, the relationship among heel height, speed and gait variables is investigated using linear regression. Background: Gait changes by heel height or speed have been studied respectively, but has not been reported whether there is an interaction effect between heel height and speed. It would be necessary to understand how gait changes when a person wears heels in different heights at various speeds, for example, high-heeled walking at fast speed, since it may cause unusual gait patterns and musculoskeletal disorders. Method: Ten females were asked to walk at five fixed cadences (94, 106, 118, 130 and 142 steps/min.) wearing three shoes with different heel heights (1, 5.4 and 9.8cm). Nineteen gait variables were analyzed for stride parameters and joint angles using two-way repeated measure analysis of variance and regression analysis. Results: Both heel height and speed affect movement of ankle, knee, spine and elbow joint, as well as stride length and Double/Single support time ratio. However, there is no significant interaction effect between heel height and speed. The regression result shows linear relationships of gait variables with heel height and speed. Conclusion: Heel height and speed independently affect stride parameters and joint angles without a significant interaction, so the gait variables are linearly amplified or diminished by the two factors. Application: Walking in high heels at fast speed should be careful for musculoskeletal disorders, since the amplified movement of knee and spine joint can lead to increased moment. Also, the result might give insight for animators or engineers to generate walking motion with high heels at various speeds.

Discontinuous Zigzag Gait Planning of Quadruped Walking Robot with an Articulated Spine (허리관절을 가지는 4족보행로봇의 지그재그 걸음새 계획)

  • 박세훈;하영호;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.703-710
    • /
    • 2004
  • This paper presents discontinuous zigzag gait analysis for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. An articulated spine walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. First, we suggest a kinematic modeling of an articulated spine robot which has new parameters such as a waist-joint angle, a rotate angle of a front and rear body and describe characteristics of gait using an articulated spine. Next, we compared the difference of walking motion of newly modeled robot with that of a single rigid-body robot and analyzed the gait of an articulated spine robot using new parameters. On the basis of above result, we proposed a best walking motion with maximum stability margin. To show the effectiveness of proposed gait planning by simulation, firstly the fastest walking motion is identified based on the maximum stride, because the longer the stride, the faster the walking speed. Next, the gait stability margin variation of an articulated spine robot is compared according to the allowable waist-joint angle.

Short-Term Clinical Effects of Robot-Assisted Gait Training Applied to Patients Undergoing Lower Extremity Surgery: A Pilot Study (하지 수술환자에게 적용한 로봇보조 보행훈련의 단기간 임상적 효과: 예비 연구)

  • Lee, Ha-Min;Kwon, Jung-Won
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.295-306
    • /
    • 2022
  • Purpose: This study aimed to investigate the effect of robot-assisted gait training on the active ranges of motion, gait abilities, and biomechanical characteristics of gait in patients who underwent lower extremity surgery, and to verify the effectiveness and clinical usefulness of robot-assisted gait training. Methods: This study was conducted on 14 subjects who underwent lower extremity surgery. The subjects participated in robot-assisted gait training for 2 weeks. The active ranges of motion of the lower extremities were evaluated, and gait abilities were assessed using 10-m and 2-min walk tests. An STT Systems Inertial Measurement Unit was used to collect data on biomechanical characteristics during gait. Spatiotemporal parameters were used to measure cadence, step length, and velocity, and kinematic parameters were used to measure hip and knee joint movement during gait. Results: Significant improvements in the active ranges of motion of the hip and knee joints (flexion, extension, abduction, and adduction) and in the 10-m and 2-min walk test results were observed after robot-assisted gait training (p < 0.05). In addition, biomechanical characteristics of gait, spatiotemporal factors (cadence, step length, and velocity), and kinematic factors (gait hip flexion-extension, internal rotation-external rotation angle, and knee joint flexion-extension) were also significantly improved (p < 0.05). Conclusion: The results of this study are of clinical importance as they demonstrate that robot-assisted gait training can be used as an effective intervention method for patients who have undergone lower extremity surgery. Furthermore, the findings of this study are clinically meaningful as they expand the scope of robot-assisted gait training, which is currently mainly applied to patients with central nervous system conditions.

Relationship Between the Postural Alignments and Spatio-temporal Gait Parameters in Elderly Woman (여성 노인의 자세 정렬과 시공간 보행 변수 사이의 연관성)

  • Kim, Sung-Hyeon;Shin, Ho-Jin;Suh, Hye-Rim;Jung, Kyoung-Sim;Cho, Hwi-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.3
    • /
    • pp.117-125
    • /
    • 2020
  • PURPOSE: Aging causes changes in the postural alignment and gait due to changes in the nervous and musculoskeletal systems. On the other hand, the relationship between the changes in posture alignment and gait is unclear. This study examined the relationship between the postural alignment and spatiotemporal gait parameters in Korean elderly women. METHODS: Thirty-two-healthy elderly women participated in this study. All subjects were assessed for their posture alignment and gait ability. Stepwise multiple linear regression was performed to determine to what extent the postural alignments could explain the spatiotemporal gait parameters. RESULTS: Coronal head angle was moderately correlated with the velocity (r = -.51), normalized velocity (r = -.46) and gait-stability ratio (r = .58) (p < .05). The trunk angle was moderately correlated with the normalized velocity (r = -.32) and gait-stability ratio (r = .32) and weakly correlated with the velocity (r = -.28) (p < .05). The coronal shoulder angle was moderately correlated with the swing phase (r = -.57), stance phase (r = .56), single limb stance (r = -.56) and double limb stance (r = .51) (p < .05). The coronal head angle and trunk angle accounted for 36% of the variance in velocity, 33% variance in normalized velocity and 46% variance in the gait-stability ratio (p < .05). The coronal shoulder angle accounted for 32% variance in the swing phase, 32% variance in the stance phase, 31% variance in the single limb stance and 26% variance in the double limb stance (p < .05). CONCLUSION: Changes in posture alignment in elderly women may serve as a biomarker to predict a decrease in walking ability due to physical aging.