The purpose of this study is to develop a gait-event detection system, which is necessary for the cycle-to-cycle FES control of locomotion. Proposed gait event detection system consists of a signal measurement part and gait event detection part. The signal measurement was composed of the sensors and the LabVIEW program for the data acquisition and synchronization of the sensor signals. We also used a video camera and a motion capture system to get the reference gait events. Machine learning technique with ANN (artificial neural network) was adopted for automatic detection of gait events. 2 cycles of reference gait events were used as the teacher signals for ANN training and the remnants ($2\sim5$ cycles) were used fur the evaluation of the performance in gait-event detection. 14 combinations of sensor signals were used in the training and evaluation of ANN to examine the relationship between the number of sensors and the gait-event detection performance. The best combinations with minimum errors of event-detection time were 1) goniometer, foot-switch and 2) goniometer, foot-switch, accelerometer x(anterior-posterior) component. It is expected that the result of this study will be useful in the design of cycle-to-cycle FES controller.
The purpose of this study is to develop a portable gait-event detection system which is necessary for the cycle-to-cycle FES(functional electrical stimulation) control of locomotion. To make the system portable, we made following modifications in the gait signal measurement system. That is, 1) to make the system wireless using Bluetooth communication, 2) to make the system small-sized and battery-powered by using low power consumption ${\mu}$ P(ATmega8535L). The gait-events were analyzed in off-line at the main computer using ANN(Artificial Neural Network). The Proposed system showed no mis-detection of the gait-events of normal subject and hemiplegia subjects. The performance of the system was better than the previous wired-system.
The purpose of this study was to develop the inertial sensor module system to detect gait event using single angular rate sensor(gyroscope), and evaluate the accuracy of this system. This sensor module is attached at the heel and gait events such as heel strike, foot flat, heel off, toe off are detected by using proposed automatic event detection algorithm. The developed algorithm detect characteristics of pitch data of the gyroscope to find gait event. To evaluate the accuracy of system, 3D motion capture system was used and synchronized with sensor module system for comparison of gait event timings. In experiment, 6 subjects performed 5 trials level walking with 3 different conditions such as slow, preferred and fast. Results showed that gait event timings by sensor module system are similar to that by kinematic data, because maximum absolute errors were under 37.4msec regardless of gait velocity. Therefore, this system can be used to detect gait events. Although this system has advantages of small, light weight, long-term monitoring and high accuracy, it is necessary to improve the system to get other gait information such as gait velocity, stride length, step width and joint angles.
Journal of information and communication convergence engineering
/
제15권4호
/
pp.244-249
/
2017
Wearable sensor-based gait analysis has been widely conducted to analyze various aspects of human ambulation abilities under the free-living condition. However, there have been few research efforts on using wearable sensors to analyze human walking on an unstable surface such as on a ship during a sea voyage. Since the motion of a ship on the unstable sea surface imposes significant differences in walking strategies, investigation is suggested to find better performing wearable sensor-based gait analysis algorithms on this unstable environment. This study aimed to compare two representative gait event algorithms including time domain and frequency domain analyses for detecting heel strike on an unstable platform. As results, although two methods did not miss any heel strike, the frequency domain analysis method perform better when comparing heel strike timing. The finding suggests that the frequency analysis is recommended to efficiently detect gait event in the unstable walking environment.
The purpose of this study is to develop a practical gait-event detection system which is necessary for the FES (functional electrical stimulation) control of locomotion in paralyzed patients. The system is comprised of a sensor board and an event recognition algorithm. We focused on the practicality improvement of the system through 1) using accelerometer to get the angle of shank and dispensing with the foot-switches having limitation in indoor or barefoot usage and 2) using a rule-base instead of threshold to determine the heel-off/heel-strike events corresponding the stimulation on/off timing. The sensor signals are transmitted through RF communication and gait-events was detected using the peaks in shank angle. The system could detect two critical gait-events in all five paralyzed patients. The standard deviation of the gait events time from the peaks were smaller when 1.5Hz cutoff frequency was used in the derivation of the shank angle from the acceleration signals.
Kim, JeongKyun;Bae, Myung-Nam;Lee, Kang Bok;Hong, Sang Gi
ETRI Journal
/
제42권1호
/
pp.46-53
/
2020
Gait analysis is an effective clinical tool across a wide range of applications. Recently, inertial measurement units have been extensively utilized for gait analysis. Effective gait analyses require good estimates of heel-strike and toe-off events. Previous studies have focused on the effective device position and type of triaxis direction to detect gait events. This study proposes an effective heel-strike and toe-off detection algorithm using a smart insole with inertial measurement units. This method detects heel-strike and toe-off events through a time-frequency analysis by limiting the range. To assess its performance, gait data for seven healthy male subjects during walking and running were acquired. The proposed heel-strike and toe-off detection algorithm yielded the largest error of 0.03 seconds for running toe-off events, and an average of 0-0.01 seconds for other gait tests. Novel gait analyses could be conducted without suffering from space limitations because gait parameters such as the cadence, stance phase time, swing phase time, single-support time, and double-support time can all be estimated using the proposed heel-strike and toe-off detection algorithm.
본 연구의 목적은 실외 보행 실험 시 사용하기에 간편한 가속도계를 이용하여 보행 이벤트를 자동으로 검출하는 알고리즘을 개발하고 검증하는 것이다. 개발된 알고리즘은 신발의 발등에 부착된 3축 가속도계의 가속도의 총합과 보행 진행 방향(x축) 가속도를 이용하였다. 가속도 총합은 착지 시점의 검출에, x축 가속도는 이지 시점의 검출에 각각 사용되었다. 7명의 피험자가 느린 보행 속도 선호 보행 속도 빠른 보행 속도로 보행 실험을 수행하였고, 개발된 알고리즘의 검증을 위해 지면반력기를 포함한 3차원동작분석시스템과 동시에 실시되었다. 지면반력기를 이용한 보행 시점을 기준으로, 기존에 발표된 동작 자료만을 이용한 알고리즘을 통하여 얻어진 보행 시점도 함께 비교 하였다. 그 결과, 고안된 알고리즘의 정확도는 지면반력기를 이용한 값에 평균, 착지시점은 $22.33{\pm}17.45ms$, 이지시점은 $26.82{\pm}14.78ms$의 차이가 났고, 그 오차의 패턴이 일관적으로 20ms가량 먼저 검출되는 경향이 있었다. 일반적으로 트레드밀 실험에서 많이 사용되는 동작데이터를 통한 보행 시점의 비교에서도 크게 차이를 보이지 않았다. 그러므로 개발된 알고리즘은 실외 실험의 보행 시점 검출에 이용할 수 있을 것으로 판단된다. 추후 연구로는 현재의 가속도계만으로 보행 시점뿐 만아니라, 중력가속도 성분을 제거하여 보행 공간변인의 추출이 필요할 것이다.
The purpose of this study is to determine optimal filtering condition and threshold for the detection of gait-cycles for various walkway slopes as well as gait velocities. Ten young healthy subjects with accelerometer system on thigh and ankle walked on a treadmill at 9 conditions (three speeds and three slopes) for 5 minutes. Two direction signals, i.e. anterior-posterior (AP) and superior-inferior (SI) directions, of each sensor (four sensor orientations) were used to detect specific events of gait cycle. Variation of the threshold (from -1G to 1G) and lowpass cutoff frequency (fc) were applied to the event detection and their performance was evaluated according to the error index (EI), which was defined as the combination of the accuracy and false positive rate. Optimal fc and threshold were determined for each slope in terms of the EI. The optimal fc, threshold and their corresponding EI depended much on the walkway slope so that their coefficients of variation (CV) ranged 19~120%. When all data for 3 slopes were used in the identification of optimal conditions for each sensor, the best error indices for all sensor orientations were comparable ranging 1.43~1.76%, but the optimal fc and threshold depended much on the sensor position. The result indicates that the gait-cycle detection robust to walkway slope is possible by threshold method with well-defined filtering condition and threshold.
Choi, Seungyoung;Cho, Hyungpil;Kang, Boram;Lee, Dong Hun;Kim, Mi Jung;Jang, Seong Ho
Annals of Rehabilitation Medicine
/
제39권6호
/
pp.897-904
/
2015
Objective To investigate differences in plantar pressure distribution between a normal gait and unpredictable slip events to predict the initiation of the slipping process. Methods Eleven male participants were enrolled. Subjects walked onto a wooden tile, and two layers of oily vinyl sheet were placed on the expected spot of the 4th step to induce a slip. An insole pressure-measuring system was used to monitor plantar pressure distribution. This system measured plantar pressure in four regions (the toes, metatarsal head, arch, and heel) for three events: the step during normal gait; the recovered step, when the subject recovered from a slip; and the uncorrected, harmful slipped step. Four variables were analyzed: peak pressure (PP), contact time (CT), the pressure-time integral (PTI), and the instant of peak pressure (IPP). Results The plantar pressure pattern in the heel was unique, as compared with other parts of the sole. In the heel, PP, CT, and PTI values were high in slipped and recovered steps compared with normal steps. The IPP differed markedly among the three steps. The IPPs in the heel for the three events were, in descending order (from latest to earliest), slipped, recovered, and normal steps, whereas in the other regions the order was normal, recovered, and slipped steps. Finally, the metatarsal head-to-heel IPP ratios for the normal, recovered, and slipped steps were $6.1{\pm}2.9$, $3.1{\pm}3.0$, and $2.2{\pm}2.5$, respectively. Conclusion A distinctive plantar pressure pattern in the heel might be useful for early detection of a slip event to prevent slip-related injuries.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.