• Title/Summary/Keyword: Gait analyzer

Search Result 54, Processing Time 0.026 seconds

Design and Analysis of a PLS of the Biped Walking RGO for a Trainning of Rehabilitation Considering Human Vibration(I) (인체진동을 고려한 재활훈련용 이족보행 RGO 보조기 PLS의 생체역학적 설계와 해석 (I);-인체진동 응력해석과 FEM을 중심으로 -)

  • 김명회;장대진;양현석;백윤수;박영필;박창일
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2003
  • This paper presented a design and control of a biped walking RGO(robotic gait orthosis) and its simulation. The biped walking RGO was distinguished from the other one by which had a very light-weight and a new RGO system will be made of 12-servo motors and 12-controllers. The vibration evaluation of the dynamic PLS(posterior leaf splint) on the biped walking RGO was used to access by the 3-axis accelerometer with a low frequency vibration of less than 30 Hz. The galt of the biped walking RGO depends on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by analyzing the ZMP (zero moment point) of the biped walking RGO. It was designed according to the human wear type and was able to accomodate itself to the environments of S.C.I. Patients. The Joints of each leg were adopted with a good kinematic characteristics. To analyse joint kinematic properties. we made the strain stress analysis of the dynamic PLS and the analysis study of FEM with a dynamic PLS.

Design and Control of a Dynamic PLS of the Biped Walking RGO for a Trainning of Rehabilitation considering Human Vibration (인체진동을 고려한 재활훈련용 이족보행 RGO 보조기의 생체역학적 해석 <인체진동 응력해석과 FEM을 중심으로>)

  • 장대진;김명회;양현석;백윤수;박영필;박창일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.752-759
    • /
    • 2002
  • This paper presented a design and a control of a biped walking RGO and walking simulation by this system. The biped walking RGO was distinguished from the other one by which had a very light-weight and a new RGO type with 12-servo motors. The vibration evaluation of the dynamic PLS on the biped walking RGO was used to access by the 3-axis accelerometer with a low frequency vibration for the spinal cord injuries. The gait of a biped walking RGO depended on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by a ZMP (Zero Moment Point) of the biped walking RGO. It was designed according to a human wear type and was able to accomodate itself to a human environments. The joints of each leg were adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of the dynamic PLS and the analysis study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to recover effectively with a biped walking RGO.

  • PDF

Analysis on the differences of mechanical efficiency from design characteristics of wheelchair (휠체어 디자인 특성에 따른 효율의 차이 규명)

  • Lim, Bee-Oh;Moon, Yeong-Jin;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.109-119
    • /
    • 2003
  • The purpose of this study was to investigate differences of the mechanical efficiency on the characteristics of the basketball wheelchairs(cambers & size of the handrims). Nine healthy and normal wheelchair basketball players who had no impairments to their upper extremities were volunteered to participate in this study. $VO_2$ was collected using automatic gas analyzer(vmax29). Gross efficiency, net efficiency and work efficiency were analyzed from the calculated external power output and energy expenditure. The results were followed. First, gross efficiency in the basketball wheelchairs was observed across the range from 4 to 10%. Gross efficiency in this study showed less values than that from the literature reviewed in the arm cranking(15%), racing wheelchair(above 30%), gait(27%) and cycling(18-23%). Second, the small size of handrim(61cm) at the 16 degrees of camber produced higher efficiency values than the large size of handrim(66cm) whereas the different sizes of handrim at the 20 degrees of camber did not show any pattern. Third, both faster speed($1.11^m/s{\rightarrow}1.39^m/s$) and increases in treadmill inclination produced increases in energy expenditure. The results of this study may provide not only better understanding of the mechanical efficiency with adequate camber degree and proper size of handrim but also fundamental information for manufacturing the wheelchair.

An Analysis of the Correlation between High Heels and Pain in the Low Back, Knee, Ankle and Toe, Length of Legs, and Plantar Pressure among Women in Their Twenties. (하이힐을 자주 착용하는 20대 여성의 허리, 무릎, 발목 및 발가락 통증, 다리 길이 그리고 족저압과의 상관분석)

  • Lee, Min-woo;Jeong, Yeon-woo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.11-18
    • /
    • 2020
  • Background: The purpose of this study is to examine the correlation between high heels and body imbalance among female college students in their twenties who mainly wear high heels and prevent associated problems. Methods: The subjects included 89 female college students in their twenties. They were measured in plantar pressure with a gait analyzer. Their legs were measured in length with a tape measure. Their pain intensity and pain frequency were measured in visual analog scale and in pain rating score. Results: There were statistically positive correlations between right leg length and low back pain frequency (p<.05) and negative correlations between the left hindfoot and low back pain frequency (p<.05). There were statistically positive correlations between right leg length and knee pain frequency (p<.05) and positive correlations between the ankle pain intensity and right leg length (p<.05). Conclusion: The stronger the pain was in the ankle, the stronger and more frequent their lumber pain was. When the pressure of the left heel was lower, the frequency of lumbar pain increased.

The Effect of Stretching and Elastic Band Exercises Knee Space Distance and Plantar Pressure Distribution during Walking in Young Individuals with Genu Varum

  • Park, So-Ra;Ro, Hyo-Lyun;Namkoong, Seung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • PURPOSE: The purpose of this study was to investigate the effects of stretching and elastic band exercise on the knee space distance and plantar pressure distribution in people with genu varum. METHODS: The subjects of this study were students of a college who had genu varum of 14 subjects. The subjects were randomly divided into two groups as a stretching group (n=7, 4 males and 3 females, age: $20.14{\pm}2.54years$, height: $167.1{\pm}9.78cm$, weight: $58.6{\pm}10.13kg$) and a Thera-band group (n=7, 5 males and 2 females, age: $19.85{\pm}2.04years$, height: $166.5{\pm}5.82cm$, weight: $54.2{\pm}5.59kg$). The stretching and the There-band exercises were performed three times per a week, for four weeks. We measured changes in plantar pressure during walking, using a Gait Analyzer and distance of both knees at pre and post-intervention. RESULTS: These results suggest that the space distance of both knees showed differences before and after the intervention. The plantar pressure distribution was no changes in both groups before and after the intervention except for the left foot in a stretching group. CONCLUSION: As a result, the space distance of knees in both groups was significantly reduced. These result suggested that the Thera-band and stretching exercises were effective ways in alleviating genu varum.

The Effect of Pressure Distribution on the both Foots With Gluteus Medius Muscle Intensive Strengthening Exercise in 4Weeks. (4주간의 중간볼기근 중점 강화운동이 양쪽 발의 압력 분포에 미치는 영향)

  • Park, Sam-Ho;Park, Jong-Hang;Kim, Yoon-hwan
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.24 no.1
    • /
    • pp.67-75
    • /
    • 2018
  • Background: The purpose of this study was to investigate the effect of pressure distribution on the both foots with gluteus medius muscle intensive strengthening exercise in 4week. Methods: The purpose of this study was to investigate the effect of gluteus medius muscles strengthening exercise on the pressure distribution of the foot in 20 healthy adults. Four gluteus medius muscles strengthening exercise programs were conducted three times a week for four weeks. The pressure distribution changed of the right and left foot parts of the experimental group and the control group were measured and analyzed. Results: There was a significant difference in F1, F2, M1, M2, and H1 among the pressure distribution of the right foot of the experimental group (p<.05). There was a significant difference in F1, M1, M2, H1 and H2 among the pressure distributions of the left foot of the experimental group (p<.05). There was a significant difference in H1 among the pressure distribution of the right foot of the control group (p<.05). There was no significant difference in the pressure distribution of the left foot region of the control group (p>.05). There was a significant difference in H1 among the pressure distribution of the right foot between the group (p<.05). There was a significant difference in M2, H1 among the pressure distribution of the left foot between the group (p<.05). Conclusions: In the healthy adults, it was confirmed that the application of the gluteus medius muscles strengthening exercise had an effect on the weight shift during the walking due to the overall foot balance and the pressure distribution change of the foot part.

The change of ankle of plantar pressure and range of motion joint according to treadmill gradients (트레드밀보행 시 경사도에 따른 족저압과 발목관절의 관절가동범위의 변화)

  • Kim, Tae-Ho;Kim, Byoung-Gon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.14 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Purpose : The purpose of this study was to investigate the change of the peak plantar pressure distribution under the foot areas and the range of motion (ROM) of ankle joint according to gradients in treadmill gait. Method : Thirty normal subjects (15 male and 15 female) walked on treadmill at three gradient conditions ($0^{\circ}$, $10^{\circ}$, and $15^{\circ}$) in normal speed. The ankle ROM was measured using the CMS70P that is three dimensional analyzer for excursion of ankle ROM, plantar flexion, and dorsi flexion. The peak plantar pressure distribution under the hallux, 1st metatarsal head (MTH) and heel was measured using the F -Scan system with an in-shoe sensor. Data was collected from 9 steps of left sife foot in at each gradient condition while all subjects walked. Result : As the treadmill gradient increased, the excursion of ankle joint was significantly increased (p<.05). Also, plantar flexion and dorsi flexion was significantly increased according to treadmill gradients (p<.05). The peak plantar pressure under the 1st MTH was significantly increased (p<.05) and the peak plantar pressure under the heel was significantly decreased (p<.05) as the treadmill gradient increased. No significant different in the peak plantar pressure under the hallux was observed. Conclusion : This study suggests that physical therapy for patients who have limited ankle ROM should be considered sufficient range of motion for functional ambulation. And individuals that have painful forefoot syndromes, including metatarsalgia, hallux valgus, and plantar ulceration should be careful in walking to uphill, as there is high plantar pressure under the forefoot.

  • PDF

The Effects Where the Stroke Shoes Which Use Functional Electric Stimulation Goes Mad to Walking of the Hemiplegia (기능적 전기자극 치료기를 이용한 중풍구두가 편마비 환자의 보행에 미치는 영향)

  • Kim, Jeong-Seon;Park, Ji-Whan
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • Purpose: An objective analysis and observations were to be done on hemiplegia patients that are wearing a walking support device, Stroke shoes. Their improvements in walking pace, the reduction of distance between the two knee joint, the increase of curve angle of the knee joint and their steps and the reduction of ankle joint upon swing phase were analyzed using a 20 walking analyzer. Methods: An examination was carried out to see the patients' communication skill and independent walking and then let them walk with the Stroke shoes on to get results before and after wearing it. Simi Reality Motion Systems GmbH (Germany, 2007) was used to analyze the results regarding knee joint and ankle joint angle changes of sagitta plane and coronal plane, stepping distances, distances between the knees and walking pace. Results: 1. The articulation angle of ankle joint during swing phase decreased and knee joint has shown a statistically significant increase in such value(p<0.05). 2. Only knee joint showed a significant increase in articulation angle during heel strike(p<0.05). 3. Knee joint showed a significant increase in articulation angle during toe off(p<0.05). 4. The distance between the two knees as well as their foot steps significantly decreased compared with when Stroke shoes were not worn(p<0.05). 5. Stroke shoes with FES have shown positive effects on the patients in improving their walking styles overall. (p<0.05). Conclusion: There was an improvement in rotation walking pattern by a reduction in the distance between the knees after wearing Stroke shoes with FES. Plantar flexion reduced that occurred in ankle joint during walking and flexion angle increased in knee joint, both of which improved foot drop which was a major problem in hemiplegia patients. Also it is believed that the device will have some positive influences on knee joint stiffening paralysis to aid in improving inefficient walking phases.

  • PDF

Effects of Changes in the Indoor and Outdoor Environmental on the Walking Speed and Lower Extremity Muscle Activities in People Aged Forty and Older than Seventy Years (실내·외 보행환경의 변화가 40대와 노인의 보행속도와 다리 근활성도에 미치는 영향)

  • Lee, Jun-Young;Kim, Tack-Hoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.139-148
    • /
    • 2018
  • PURPOSE: This study compared the effects of indoor and outdoor environmental changes on the activity of the major lower limb muscles and walking factors in people 40-50 years and those aged older than 70 years. METHODS: Ten middle-aged people in their forties (age:$44.2{\pm}2.7$, BMI:$21.8{\pm}1.8$) and 10 elderly aged more than 70 years (age:$76.4{\pm}5.9$, BMI:$22.2{\pm}1.9$) with a normal walking ability were included. The participants walked 100 m both indoors and outdoors at their own speed. Using a 3D motion analyzer and EMG, the walking speed, angle of the ankle and activity changes of the lower limb muscles were compared. RESULTS: Significant differences in walking speed and peak-plantar flexion angle were observed between the two groups (p<.05). The muscular activity of the gastrocnemius muscle (GCM) was significantly different outdoors in the swing phase between the two groups (p<.05). In the people aged in their forties, the muscular activity of the rectus femoris (RF) was significantly higher outdoors than indoors (p<.05). In the elderly, however, the muscular activity of the RF was lower outdoors than indoors (p<.05). When compared to those in there forties, the muscular activity of the outdoor RF significantly decreased in the elderly group (P<.05). The muscular activity of the biceps femoris (BF) in the elderly decreased significantly outdoors compared to indoors (p<.05). CONCLUSION: For the elderly, increasing the exposure to the new environments or focusing on the performance of repeated movements for gradual speed control and precise movements is required to maintain normal gaits and movements that are less affected by environmental changes.

Step Count Detection Algorithm and Activity Monitoring System Using a Accelerometer (가속도 센서를 이용한 보행 횟수 검출 알고리즘과 활동량 모니터링 시스템)

  • Kim, Yun-Kyung;Lho, Hyung-Suk;Cho, We-Duke
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.127-137
    • /
    • 2011
  • We have developed a wearable device that can convert sensor data into real-time step counts and activity levels. Sensor data on gait were acquired using a triaxial accelerometer. A test was performed according to a test protocol for different walking speeds, e.g., slow walking, walking, fast walking, slow running, running, and fast running. Each test was carried out for 36 min on a treadmill with the participant wearing a portable gas analyzer (K4B2), an Actical device, and the device developed in this study. The signal vector magnitude (SVM) was used to process the X, Y, and Z values output by the triaxial accelerometer into one representative value. In addition, for accurate step-count detection, we used three algorithms: an heuristic algorithm (HA), the adaptive threshold algorithm (ATA), and the adaptive locking period algorithm (ALPA). A regression equation estimating the energy expenditure (EE) was derived by using data from the accelerometer and information on the participants. The recognition rate of our algorithm was 97.34%, and the performance of the activity conversion algorithm was better than that of the Actical device by 1.61%.