• Title/Summary/Keyword: Gait Velocity

Search Result 348, Processing Time 0.021 seconds

Relationship between Dimensionless Leg Stiffness and Kinetic Variables during Gait Performance, and its Modulation with Body Weight

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.249-255
    • /
    • 2016
  • Objective: This purpose of this study was to analyze the relationship between dimensionless leg stiffness and kinetic variables during gait performance, and its modulation with body weight. Method: The study sample consisted of 10 young women divided into 2 groups (Control, n=5 and Obese, n=5). Four camcorders (HDR-HC7/HDV 1080i, Sony Corp, Japan) and one force plate (AMTI., USA) were used to analyze the vertical ground reaction force (GRF) variables, center of pressure (COP), low limb joint angle, position of pelvis center and leg lengths during the stance phase of the gait cycle. Results: Our results revealed that the center of mass (COM) displacement velocity along the y-axis was significantly higher in the obese group than that in control subjects. Displacement in the position of the center of the pelvis center (Z-axis) was also significantly higher in the obese group than that in control subjects. In addition, the peak vertical force (PVF) and dimensionless leg stiffness were also significantly higher in the obese group. However, when normalized to the body weight, the PVF did not show a significant between-group difference. When normalized to the leg length, the PVF and stiffness were both lower in the obese group than in control subjects. Conclusion: In the context of performance, we concluded that increased dimensionless leg stiffness during the gait cycle is associated with increased velocity of COM, PVF, and the change in leg lengths (%).

The Effects of Yoga Exercise on Balance and Gait Velocity in Stroke Patient (요가운동이 뇌졸중 환자의 균형과 보행속도에 미치는 영향)

  • Song, Hyun-Seung;Kim, Jin-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.294-300
    • /
    • 2013
  • The purpose of this study was to analyse the effects of yoga exercise on balance ability and gait velocity in stroke patients. Subjects were categorized in to a control group and yoga program group with 9 for each group. Yoga program was conducted for 60minute for 8weeks, three times a week. For the purposes, the study measured Stability Index(SI, postural sway) and Weight Distribution Index(WDI) using Tetrax, Functional Reach Test(FRT), Dynamic Gait index(DGI) and 10 meter walking test. At pre- and post-exercise after appling the yoga exercise, the data was analyzed. Yoga exercise group's SI and WDI were decreased, FRT and DGI were increased in comparison with control group. But 10 meter walking test was no significance. It suggests that the yoga exercise could promote recovery from balance disorder after stroke.

Analysis of the Gait Characteristics and Interaction among Bilateral Lower Extremity Joints According to Shoe'S Heel Heights in Young Women (젊은 성인 여성의 구두 힐 높이 별 보행특성 및 하지관절 간 상호작용 비교분석)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.445-453
    • /
    • 2014
  • The purpose of this study was to analyze the gait characteristics and interaction between lower extremity joints according to shoe's heel heights in young women. Participants were selected as subject consisted of young and healthy women (age: $23.71{\pm}1.49yrs$, height: $165.92{\pm}2.00cm$, body weight: $54.37{\pm}3.46kg$) and walked with 3 types of shoe's high-heel (0, 5, 9 cm). The variables analyzed consisted of the displacement of Y axis in center of mass ([COM]; (position, velocity), front rear(FR) and left right(LR) angle of trunk, lower extremity joint angle (hip, knee, ankle) and asymmetric index (AI%). The displacement of Y axis in COM position showed the greater movement according to increase of shoe's heel heights, but velocity of COM showed the decrease according to increase of shoe's heel heights during gait. The hip and knee angle didn't show significant difference statistically according to increase of shoe's heel height, but left hip and knee showed more extended posture than those of right hip and knee angle. Also ankle angle didn't show significant difference statistically, but 9 cm heel showed more plantarflexion than those of 5 cm and 0 cm. The asymmetric index (AI%) showed more asymmetric 9 cm heel than those of 0 cm and 5 cm. The FR and LR angle in trunk tilting didn't show significant difference statistically according to the increase of shoe's heel height during gait in young women.

The Effects of Ankle Mobilization with Movements on the Ankle Range of Motion, Balance, and Gait of Patients after Total Knee Arthroplasty (무릎관절 전치환술을 시행한 환자의 발목관절에 움직임을 동반한 관절가동술이 발목 관절가동범위, 균형, 보행에 미치는 영향)

  • Yoon, Jung-dae;Lee, Jae-nam
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • Background: The purpose of this study was conducted to investigate the effects of the ankle mobilization with movement (MWM) technique on ankle dorsiflexion range of motion (ROM), balance, and gait in patients who underwent total knee replacement (TKR). Methods: Thirty patients with knee osteoarthritis were recruited and randomly divided into two groups: the experimental group (EG; n=15) and the control group (CG; n=15). For five days a week for 3 weeks, participants in the EG were treated with the ankle MWM technique and traditional total knee replacement (TKR) exercise, and those in the CG only performed traditional TKR exercises. The dorsiflexion ROM, balance, and gait of the patients were before and after exercise. Results: Balance system SD was used compare changes in dynamic balance. Patients in the EG group showed statistically significant differences after the intervention (p<.05). In addition, there was a statistically significant difference in dynamic balance between the EG and CG groups after the intervention (p<.05). STT-IBS was used to compare changes in velocity, step length, stride length, and ankle dorsiflexion ROM. Patients in the EG group showed statistically significant differences after the intervention (p<.05). In addition, there was a statistically significant difference in the velocity, step length, stride length, and ankle dorsiflexion ROM between the EC and CG groups after the intervention (p<.05). Conclusion: Our results showed that applying the ankle MWM technique with traditional TKR exercises improved ankle dorsiflexion ROM, dynamic balance, and gait in patients.

Differences in the Gait Pattern and Muscle Activity of the Lower Extremities during Forward and Backward Walking on Sand

  • Kwon, Chae-Won;Yun, Seong Ho;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.1
    • /
    • pp.45-50
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the spatiotemporal and kinematic gait parameters and muscle activity of the lower extremities between forward walking on sand (FWS) and backward walking on sand (BWS) in normal adults. Methods: This study was conducted on 13 healthy adults. Subjects performed FWS and BWS and the spatiotemporal and kinematic gait parameters of stride time, stride length, velocity, cadence, step length, stance, swing, double support, and hip range of motion (ROM), knee ROM were measured by a wearable inertial measurement unit system. In addition, the muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GA) was measured. Results: The stride length, stride velocity, cadence, and step length in the BWS were significantly lower than FWS (p<0.05), and stride time was significantly greater (p<0.05). However, there was no significant difference in the ratio of stance, swing, and double support between the two (p>0.05). The kinematic gait parameters, including hip and knee joint range of motion in BWS, were significantly lower than FWS (p<0.05). The muscle activity of the RF in BWS was significantly higher than FWS (p<0.05), but the muscle activity of the BF, TA, GA did not show any significant differences between the two movements (p>0.05). Conclusion: A strategy to increase stability by changing the gait parameters is used in BWS, and this study confirmed that BWS was a safe and effective movement to increase RF muscle activity without straining the joints. Therefore, BWS can be recommended for effective activation of the RF.

Case Report: Quantitative Evaluation of Gait Function Following Treatment Progression in a Patient with Central Pontine Myelinolysis (중심성 교뇌수초용해 환자의 치료 경과에 따른 보행 기능의 정량적 평가)

  • Sangho Ji;Sunny Kang;Jiwoo Kim;Youngjo So;Sangkwan Lee;Cheol-Hyun Kim
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.2
    • /
    • pp.190-198
    • /
    • 2024
  • Introduction: Central pontine myelinolysis (CPM) is a rare neurological disorder marked by symmetric nerve fiber damage, commonly following rapid hyponatremia correction, with no established treatment and a poor prognosis. The condition, often linked to alcoholism, malnutrition, and various diseases, lacks comprehensive studies on its impact on gait. This research aims to quantitatively analyze gait changes in CPM patients receiving both traditional Korean and conventional rehabilitation treatments, addressing a gap in current understanding of CPM management. Case presentation: A 56-year-old male diagnosed with CPM following an initial misdiagnosis underwent combined electoracupuncture and rehabilitative treatment at ○○ university Korean medical center, resulting in significant gait improvements. A treadmill gait analysis system was used to measure changes in key gait parameters at 2-week intervals, and the patient's progress was documented. Conclusions: The quantitative analysis revealed significant gait improvements. Foot rotation decreased from 8.9° to 6.4° (right) and from 11.1° to 7.2° (left); lateral symmetry improved from -7.8 to 0.8; step length increased from 21 cm to 44 cm (right) and from 19 cm to 44 cm (left); and velocity increased from 1.2 m/s to 2.7 m/s. These findings highlight decreased foot rotation and lateral symmetry, along with increased step length and velocity, suggesting a positive outcome of the treatment regimen. Notably, the patient experienced no adverse effects related to the treatments. Despite limitations, including the singe case focus and lack of prior gait-focused CPM research, this case report provides valuable insights into effective CPM management strategies, paving the way for future research in this domain.

Generation of Motor Velocity Profile for Walking-Assistance System Using Humanoid Robot Model (휴머노이드 로봇 모델을 이용한 보행재활 훈련장치의 견인모터 속도 파형 생성)

  • Choi, Young-Lim;Choi, Nak-Yoon;Park, Sang-Il;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.631-638
    • /
    • 2012
  • This work proposes a new method to generate velocity profile of a traction motor equipped in a rehabilitation system for knee joint patients through humanoid robot simulation. To this end, a three-dimensional full-body humanoid robot model is newly constructed, and natural human gait is simulated by applying to it reference joint angle trajectories already published. Linear velocity is derived from distance data calculated between the positions of a thigh band and its traction motor at every sampling instance, which is a novel idea of this paper. The projection rule is employed to kinematically describe the humanoid robot because of its high efficiency and accuracy, and measured joint trajectories are used in simulating human natural gait referring to Winter's book. The attained motor velocity profile for a certain position in human body will be applied to our walking-assistance system which is implemented with a treadmill system.

The Effects of Visual Direction Control on Balance and Gait Speed in Patients with Stroke (뇌졸중 환자의 시선 방향 조절이 균형과 보행에 미치는 영향)

  • Kwon, Hye-Rim;Shin, Won-Seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.425-431
    • /
    • 2013
  • PURPOSE: The purpose of this study was to examine the effect of visual control on gait speed and balance in patients with stroke. Static balance and gait speed were investigated with comparison and fixed direction of visual. METHODS: We included twenty-six patients with stroke. Participants were measured static balance while standing on a forceplate with one of 4 different visual direction in front, floor, non-affected side and affected side for 30 seconds. To compare of the gait speed, participants had to walk with one of fixed visual direction. And to compare of gait speed with visual dispersion, gait speed were measured with visual change in left and right, up and down direction every 5m, 2m and 1m intervals. RESULTS: The result of the static balance with fixed visual showed that the affected side and the non-affected side were shown significantly increased sway of total sway length, mediolateral distance, anteroposterior distance, average velocity(p<.05). The gait speed with fixed visual showed that affected side was significantly slower(p<.05). And the gait speed significantly increased as interval of visual dispersion decrease in the sagittal and horizontal plane(p<.05). CONCLUSION: The results from this study showed that the visual direction effected on static balance and the faster visual movement made to increase the gait speed. Therefore the rehabilitation training with visual control may be implemented for stroke patients.

Stability Margin of Fault-Tolerant Gaits to Joint Jam for Quadruped Robots (사족 보행 로봇의 관절고착고장을 위한 내고장성 걸음새의 안정여유도에 관한 연구)

  • Yang Jung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.19-27
    • /
    • 2006
  • Improvement in gait stability of fault-tolerant gaits for quadruped robots is addressed in this paper. The previously developed fault-tolerant gait gives a quadruped robot the ability to continue its walk against the occurrence of a leg failure. But it has a drawback of having marginal gait stability, which may lead to tumbling when the robot body's center of gravity is perturbed. To overcome such a drawback, a novel fault-tolerant gait is presented in this paper that generates positive stability margin against a locked joint failure, in which a joint of a leg is locked in a known place. Positive stability margin is obtained by adjusting foot positions of supporting legs between leg swing sequences. The advantages of the proposed fault-tolerant gait are discussed by comparing with the previous gait in terms of gait stability, stride length and gait velocity.

The reliability test of a smart insole for gait analysis in stroke patients

  • Seo, Tae-Won;Lee, Jun-Young;Lee, Byoung-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Background: This study analyzed the reliability of smart guides for gait analysis in patients with stroke. Design: Cross-sectional study. Methods: The participants of the study were 30 patients with stroke who could walk more than 10 m and had an MMSE-K test score of ≥24. Prior to the experiment, the subjects or their guardians entered their demographic characteristics including gender, age, height, weight into the prepared computer. The experiment was conducted in a quiet, comfortable, and independent location, and the patient was reminded of the equipment description, precautions, and safety rules for walking. A smart insole was inserted into the shoes of the patients and the shoes were put on before the patients walked three times on the 5-m gait analysis system mat installed in the laboratory. Results: The reliability of the equipment was compared with that of the gait analysis system, and the results of this study are as follows: among the gait analysis items, velocity had an ICC=0.982, the cadence had an ICC=0.905, the swing phase on the side of the gait cycle had an ICC=0.893, the swing phase on the side of the gait had an ICC=0.839, that on the non-affected side had an ICC=0.939, single support on the affected side had an ICC=0.812, and support on the non-affected side had an ICC=0.767. Conclusion: The results of this study indicate no statistical difference between the smart insole and the gait analysis system. Therefore, it is believed that real-time gait analysis through smart insole measurement could help patients in rehabilitation.