• Title/Summary/Keyword: Gait Trajectory Planning

Search Result 23, Processing Time 0.034 seconds

Gait Programming of Quadruped Bionic Robot

  • Li, Mingying;Jia, Chengbiao;Lee, Eung-Joo;Feng, Yiran
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.121-130
    • /
    • 2021
  • Foot bionic robot could be supported and towed through a series of discrete footholds and be adapted to rugged terrain through attitude adjustment. The vibration isolation of the robot could decouple the fuselage from foot-end trajectories, thus, the robot walked smoothly even if in a significant terrain. The gait programming and foot end trajectory algorithm were simulated. The quadruped robot of parallel five linkages with eight degrees of freedom were tested. The kinematics model of the robot was established by setting the corresponding coordinate system. The forward and inverse kinematics of both supporting and swinging legs were analyzed, and the angle function of single leg driving joint was obtained. The trajectory planning of both supporting and swinging phases was carried out, based on the control strategy of compound cycloid foot-end trajectory planning algorithm with zero impact. The single leg was simulated in Matlab with the established kinematic model. Finally, the walking mode of the robot was studied according to bionics principles. The diagonal gait was simulated and verified through the foot-end trajectory and the kinematics.

Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance (교착 회피를 고려한 내고장성 세다리 걸음새)

  • 노지명;양정민
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

A Smoothed Gait Trajectory Planning of a 9-link Biped Robot (9 링크 이족로봇의 부드러운 걸음새 경로 계획)

  • Kim, Chul-Ha;Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae;Seok, Kwak-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.424-426
    • /
    • 2005
  • We propose an analytic trajectory planning method using a wavelet neural network (WNN) for a natural and stable locomotion of the 9-link biped robot. We design a appropriate locomotion, which have a kick-action, by means of a ballastic walking model condition. In this paper, a WNN is used to interpolate the trajectory planed by the analytic method. Finally, we show the proposed trajectories through the computer simulation.

  • PDF

Motion Study for a Humanoid Robot Using Genetic Algorithm (유전 알고리즘을 이용한 휴머노이드 로봇의 동작연구)

  • Kong Jung-Shik;Lee Bo-Hee;Kim Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.84-92
    • /
    • 2006
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joint don't maintain optimally, it is hard to sustain the battery power during the working period. Also, if a gait trajectory doesn't have optimal state, the expected lift span of joints tends to be decreased. Also, if a gait trajectory doesn't have optimal state, the expected lift span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration fur the joint motion and distributed computation of tile humanoid, ISHURO, and suggest its result such as structure of the network and a disturbance observer.

Fault Tolerant Gaits of a Hexapod Robot with a Foot Trajectory Adjustment (다리 궤적을 조정하는 육각 보행 로봇의 내고장성 걸음새)

  • Yang Jung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.3 s.303
    • /
    • pp.1-10
    • /
    • 2005
  • This paper proposes a novel fault-tolerant gait planning of a hexapod robot considering kinematic constraints. The failure concerned in this paper is a locked joint failure for which a joint in a leg cannot move and is locked in place. It is shown that the conventional fault-tolerant gait of a hexapod robot for forward walking on even terrain may be fallen into deadlock, depending on the configuration of the failed leg. For coping with such deadlock situation, a novel fault-tolerant gait planning is proposed. It can avoid deadlock by adjusting the position of the foot trajectory, and has the same leg sequence and stride length as those of the conventional fault-tolerant gait. To demonstrate the superiority of the proposed scheme, a case study is presented in which a hexapod robot, having walked over even terrain before a locked joint failure, could avoid deadlock and continue its walking by the proposed fault-tolerant gait planning.

Gait Selection According to Trajectory Planning for Quadrupedal Walking Macine (4족 보행기의 경로계획에 따른 걸음걸이 선택)

  • 이종길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.151-155
    • /
    • 1996
  • In this paper, the continuous motion of a quadrupedal walking machine was studied. The motion planning which is able a walking machine body to precisely follow a three-dimensional curve was developed. A three-dimensional curve was designed based on Bezier curve and obstacle avoidance considerations. Due to the arbitrary motion direction during walking, special strategies of gaits were developed to ensure positive stability. The gait strategies were based on wave and wave-crab gait.

  • PDF

A Study on the Posture Control of a Humanoid Robot (휴머노이드 로봇의 자세 제어에 관한 연구)

  • Kim Jin-Geol;Lee Bo-Hee;Kong Jung-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.77-83
    • /
    • 2005
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has a battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joints don't maintain optimally, it is difficult for a robot to have working time for a long time. Also, if a gait trajectory doesn't have optimal state, the expected life span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by a PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration for the joint motion and distributed computation of the humanoid, ISHURO, and suggest its result such as the structure of the network and a disturbance observer.

A study on the motion trajectory planning and dynamic simulation of biped walking robot (이족 보행 로보트의 운동 궤적 계획 및 동적 시뮬레이션에 관한 연구)

  • 김창부;김웅태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.959-964
    • /
    • 1992
  • This study treats the method for kinematic modeling of the biped walking robot, for synthesizing various gait trajectories, and for calculating adequate values of the joint torque inside the stable region. To synthesize various and anthropomorphic walking easily, the gait trajectory is specified by a set of ten walking prameters, and the trunk motion equation is derived by the zero moment point and the gait trajectory. By distributing ground reaction force and moment reduced at the zero moment point to the both feet, the joint torque equation can be derived readily, and according to this equation, the joint torque to stable walking can be computed.

  • PDF

Fault-Tolerant Gait Generation of Hexapod Robots for Locked Joint Failures (관절고착고장에 대한 육각 보행 로봇의 내고장성 걸음새 생성)

  • Yang Jung-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.131-140
    • /
    • 2005
  • Fault-tolerant gait generation of a hexapod robot with crab walking is proposed. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. Due to the reduced workspace of a failed leg, fault-tolerant crab walking has a limitation in the range of heading direction. In this paper, an accessible range of the crab angle is derived for a given configuration of the failed leg and, based on the principles of fault-tolerant gait planning, periodic crab gaits are proposed in which a hexapod robot realizes crab walking after a locked joint failure, having a reasonable stride length and stability margin. The proposed crab walking is then applied to path planning on uneven terrain with positive obstacles. i.e., protruded obstacles which legged robots cannot cross over but have to take a roundabout route to avoid. The robot trajectory should be generated such that the crab angle does not exceed the restricted range caused by a locked joint failure.

Design of a Novel Gait Rehabilitation Robot with Upper and Lower Limbs Connections (상하지 연동된 새로운 보행재활 로봇의 설계)

  • Yoon, Jung-Won;Novandy, Bondhan;Christi, Christi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.672-678
    • /
    • 2008
  • This paper proposes a new rehabilitation robot with upper and lower limb connections for gait training. As humans change a walking speed, their nervous systems adapt muscle activation patterns to modify arm swing for the appropriate frequency. By analyzing this property, we can find a relation between arm swinging and lower limb motions. Thus, the lower limb motion can be controlled by the arm swing for walking speed adaptation according to a patent's intension. This paper deals with the design aspects of the suggested gait rehabilitation robot, including a trajectory planning and a control strategy. The suggested robot is mainly composed of upper limb and lower limb devices, a body support system. The lower limb device consists of a slider device and two 2-dof footpads to allow walking training at uneven and various terrains. The upper limb device consists of an arm swing handle and switches to use as a user input device for walking. The body support system will partially support a patient's weight to allow the upper limb motions. Finally, we showed simulation results for the designed trajectory and controller using a dynamic simulation tool.