• Title/Summary/Keyword: Gait

Search Result 2,446, Processing Time 0.044 seconds

Experimental Research for Traction force Sensor Development on Drawing Exercise Medical Instrument (재활 및 교정을 위한 견인운동치료기의 견인측정센서 개발에 관한 실험적 연구)

  • Lee, Sang-sik;Park, Won-yeop;Lee, Choong-ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.3-8
    • /
    • 2009
  • The traction system has been mainly used for rehabilitation and correction of patients with spine or gait diseases in orthopedics or at home. Some problems could occur in human body when patients forced their training using the traction system. So it needs to measure a traction force and control the training time. However, most of products on market have no sensor measuring traction force. Thus we designed and made a sensor detecting traction force using strain gauge, amplifier for transition to output signal and experiment devices for performance test. We carried out experiment of a sensor detecting a traction force and measured electric responses of it with respect to traction loads. Maximum error was within about 1% for experiments in static condition and the average error was about 0.7% for experiments in dynamic condition. We concluded that it is possible to use the developed sensor for measurement of traction force since the maximum output variation of a sensor detecting a traction force was about 0.3% in $0^{\circ}C-60^{\circ}C$ temperature condition.

  • PDF

The Effects of Pilates Exercise on Static and Dynamic Balance in the Elderly

  • Park, Ji-Hye;Lee, Joong-Sook;Yang, Jeong-Ok;Lee, Bom-Jin;Bae, Kang-Ho;Shin, Jin-Hyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.397-405
    • /
    • 2016
  • Objective: Pilates is a low/mid-intensity exercise that can be easily performed by elderly individuals as it is an individual body-oriented exercise. It is also a cardio workout that can be performed anywhere to develop strength and flexibility. Therefore, we investigated the effects of 8 week Pilates program on the balancing ability of elderly individuals. Method: The research participants were selected from elderly residents in B city. Ten individuals voluntarily signed an agreement to undergo free measurements as well as to participate in the workout program. (Height: $157.1{\pm}11.9cm$, Weight: $61.7{\pm}8.0kg$). The Pilates exercise was performed 60 minutes a day, three times a week for a total of eight weeks. The measurement variables used to test balance were the vestibular test, 5 m habitual and maximum walk test and 3 m tandem walk test. A series of paired t-test were conducted using IBM SPSS Statistics 23.0 to analyze all the research data collected in order to determine the balance ability of the participants before and after the Pilates program. Additionally, the statistically significant level for all analysis was set to ${\alpha}=.05$. Results: In the vestibular test, some meaningful changes were observed in the length envelope area (ENV) while standing on one foot, but there were no significant differences in the ENV, rectangle(REC), root mean square, and total length. Results also revealed that statistically significant differences existed in the 5 m habitual and maximum walk test, as well as the 3 m tandem walk test. Conclusion: To summarize the findings, the 8 week Pilates program employed in this study significantly improved the dynamic balance of the elderly participants. Thus, elderly individuals that frequent perform Pilates are expected to enjoy positive benefits such as increased balance and fewer falling accidents.

Duration of Regain of Deep Pain Perception after Decompression Surgery as a Parameter of Surgical Outcome for Acute Thoracolumbar Disc Herniation Hansen Type I with Loss of Deep Pain Perception in Dogs

  • Park, Sung-Su;Lim, Ji-Hey;Byeon, Ye-Eun;Jang, Byung-Jun;Ryu, Hak-Hyun;Uhm, Ji-Yong;Kang, Byung-Jae;Kim, Wan-Hee;Kweon, Oh-Kyeong
    • Journal of Veterinary Clinics
    • /
    • v.25 no.6
    • /
    • pp.529-532
    • /
    • 2008
  • The object of this study was to evaluate the durations from onset of neurological sign until surgery and regaining of the deep pain perception (DPP) after decompression as prognostic indicators for the outcome of decompression surgery in dogs with thoracolumbar intervertebral disc disease (IVDD). The compression lesions in the thoracolumbar vertebrae were localized by plain radiograph, computed tomography and neurological examination in 28 dogs with hindlimb paralysis. The follow up was carried out for 6 months after laminectomy. During the follow up, regaining DPP and walking ability were evaluated. Improvement to normal or paretic gait after surgery was judged as success of the surgical treatment.The success rate of surgical treatment was 70 % (7 out of 10 dogs) when surgical intervention was carried out within 24 hours but 38.9 % (7 out of 18) over 24 hours (P<0.05). The success rate of surgical treatment was 87.5 % (14 out of 16 dogs) when DDP was regained within 5 weeks after surgery but there was 0 % (0 out of 12 dogs) when DDP was not regained within 5 weeks after surgery (P<0.05). Other parameters such as compression rate in CT scan and laminectomy methods did not related with the success of the surgery. These results suggested that the time of surgery after onset and duration of regaining of DPP after decompression were useful parameter to predict the success of surgical treatment for thoracolumbar disc herniation in dogs.

Hemipelvectomy in a Cat with Obstipation (심한 변비를 보이는 고양이에서 반골반절제술을 이용한 외과적 치료 증례)

  • Yoon, Hun-Young;Kim, Kyung-Hee;Jeong, Soon-Wuk
    • Journal of Veterinary Clinics
    • /
    • v.30 no.2
    • /
    • pp.119-122
    • /
    • 2013
  • A 9-month-old female Korean short hair cat weighing 2.2 kg presented for evaluation of a two-week history of obstipation. The owner reported that the cat sustained pelvic fractures 4 months previous to the onset of fecal tenesmus. On physical examination, fecal tenesmus was observed and restriction of the movement of the right coxofemoral joint was evident. Rectal palpation revealed narrowing of the pelvic canal with a hard bony protuberance at the bilateral acetabulum and pubic bones. Radiographs revealed a distended colon with feces and narrowing of the pelvic canal with abnormal structure of the pelvic bone. Conservative management consisting of stool softeners and a warm water enema was instituted; however, there was no improvement in obstipation. Partial iliac, ischial, pubic, and acetabular ostectomies were performed. Postoperative radiographs and rectal palpation revealed the enlarged pelvic canal. Stool softeners (5 ml orally twice daily) was administered following surgery for 14 days and then tapered down to 2.5 ml for 14 days. A warm water enema was performed twice postoperatively. At examination 14 days postoperatively, no problems with defecation and gait were reported. There was no evidence of obstipation and lameness of the left pelvic limb 5 months postoperatively.

Effect of Robot Assisted Rehabilitation Based on Visual Feedback in Post Stroke Pusher Syndrome (푸셔 증후군이 있는 뇌졸중 환자에서 시각적 피드백기반 로봇보조 재활치료의 효과)

  • Kim, Min-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.562-568
    • /
    • 2016
  • This study to investigated the therapeutic effect of robot-assisted rehabilitation (Lokomat) with virtual reality (VR) on Pusher syndrome (PS) after stroke. A total of 10 patients presented with PS after stroke were recruited. The participants were divided into two groups: Lokomat (n=5) and control groups (n=5). Lokomat and conventional physical therapy (CPT) were performed together in the experimental group, and the patients in the control group were treated with CPT only twice a day. One session of intervention was carried out for 30 minutes five times per week for 4 weeks. Scale for contraversive pushing (SCP), Berg balance scale (BBS), falling index (FI), and Timed up and go test (TUG) were measured before and after the intervention. The Lokomat group produced significantly better outcomes in SCP (p=0.046), BBS (p=0.046), FI (p=0.038), and TUG (p=0.038) compared with the control group after 4 weeks of intervention. In addition, there were significant correlations between SCP and BBS (p=0.024), FI (p=0.039), and TUG (p=0.030). In conclusion, Lokomat with VR more effectively aided recovery from PS after stroke, and restoration of PS symptoms was related with improvement of balance and gait function.

Minimally Invasive Anterior Decompression Technique without Instrumented Fusion for Huge Ossification of the Posterior Longitudinal Ligament in the Thoracic Spine : Technical Note And Literature Review

  • Yu, Jae Won;Yun, Sang-O;Hsieh, Chang-Sheng;Lee, Sang-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.597-603
    • /
    • 2017
  • Objective : Several surgical methods have been reported for treatment of ossification of the posterior longitudinal ligament (OPLL) in the thoracic spine. Despite rapid innovation of instruments and techniques for spinal surgery, the postoperative outcomes are not always favorable. This article reports a minimally invasive anterior decompression technique without instrumented fusion, which was modified from the conventional procedure. The authors present 2 cases of huge beak-type OPLL. Patients underwent minimally invasive anterior decompression without fusion. This method created a space on the ventral side of the OPLL without violating global thoracic spinal stability. Via this space, the OPLL and anterior lateral side of the dural sac can be seen and manipulated directly. Then, total removal of the OPLL was accomplished. No orthosis was needed. In this article, we share our key technique and concepts for treatment of huge thoracic OPLL. Methods : Case 1. 51-year-old female was referred to our hospital with right lower limb radiating pain and paresis. Thoracic OPLL at T6-7 had been identified at our hospital, and conservative treatment had been tried without success. Case 2. This 54-year-old female with a 6-month history of progressive gait disturbance and bilateral lower extremity radiating pain (right>left) was admitted to our institute. She also had hypoesthesia in both lower legs. Her symptoms had been gradually progressing. Computed tomography scans showed massive OPLL at the T9-10 level. Magnetic resonance imaging of the thoracolumbar spine demonstrated ventral bony masses with severe anterior compression of the spinal cord at the same level. Results : We used this surgical method in 2 patients with a huge beaked-type OPLL in the thoracic level. Complete removal of the OPLL via anterior decompression without instrumented fusion was accomplished. The 1st case had no intraoperative or postoperative complications, and the 2nd case had 1 intraoperative complication (dural tear) and no postoperative complications. There were no residual symptoms of the lower extremities. Conclusion : This surgical technique allows the surgeon to safely and effectively perform minimally invasive anterior decompression without instrumented fusion via a transthoracic approach for thoracic OPLL. It can be applied at the mid and lower level of the thoracic spine and could become a standard procedure for treatment of huge beak-type thoracic OPLL.

Principal Component analysis based Ambulatory monitoring of elderly (주성분 분석 기반의 노약자 응급 모니터링)

  • Sharma, Annapurna;Lee, Hoon-Jae;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2105-2110
    • /
    • 2008
  • Embedding the compact wearable units to monitor the health status of a person has been analysed as a convenient solution for the home health care. This paper presents a method to detect fall from the other activities of daily living and also to classify those activities. This kind of ambulatory monitoring of the elderly and people with limited mobility can not only provide their general health status but also alarms whenever an emergency such as fall or gait has been occurred and a help is needed. A timely assistance in such a situation can reduce the loss of life. This work shows a detailed analysis of the data received from a chest worn sensor unit embedding a 3-axis accelerometer and depicts which features are important for the classification of human activities. How to arrange and reduce the features to a new feature set so that it can be classified using a simple classifier and also improving the classification resolution. Principal component analysis (PCA) has been used for modifying the feature set and afterwards for reducing the size of the same. Finally a Neural network classifier has been used to analyse the classification accuracies. The accuracy for detection of fall events was found to be 86%. The overall accuracy for the classification of Activities or daily living (ADL) and fall was around 94%.

A Case Report of Non-Motor Symptoms Evaluated Using the Non-Motor Symptom Scale in a Patient with Secondary Parkinsonism Presumed to be Probable Lewy Body Dementia and Improved with Combined Treatment with Herbal Medicine and Acupuncture (루이소체 치매로 추정되는 이차성 파킨슨증 환자의 Non-Motor Symptom Scale(NMSS)로 평가한 비운동성 증상을 한약과 침의 복합치료로 호전시킨 증례보고 1례)

  • Roh, Min-yeong;Lee, Ji-hyun;Han, Yang-hee;Leem, Jung-tae
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.5
    • /
    • pp.833-845
    • /
    • 2021
  • Parkinson's syndrome is a degenerative brain disease that presents characteristic motor symptoms of tremor, rigidity, and gait disturbance. In addition to these motor symptoms, Parkinson's syndrome also presents non-motor symptoms (NMSs) such as sleep disturbance and cognitive decline. NMSs reduce patient's quality of life and psychosocial functioning and cause economic burden on the patient, so appropriate evaluation and treatment are required. Lewy body dementia is one of the several diseases belonging to Parkinson's syndrome. Its symptoms such as cognitive function, memory impairment, and hallucinations occur with Parkinsonism. Although drug therapy is being used with drug treatment to treat non-motor symptoms, it has limitations such as side effects, which stimulated interest in other complementary treatment methods such as oriental medicine treatment, dance, and yoga. The patient in this case complained of tremor in the right upper extremity, muscle hypertension and pain, and persistent vision, memory, and cognitive decline. The patient was diagnosed with probable Lewy body dementia. The patient was hospitalized for 4 months and received acupuncture and herbal medicines. After treatment, the patient's NMS scale scores decreased from 90 to 63, and the Unified Parkinson's Disease Rating Scale scores (summed I, II, and III) decreased from 17 points to 8 points. The Beck Depression Inventory score decreased from 22 points to 13 points. In addition, the patient's subjective evaluation revealed improvement. In this case, a patient diagnosed with probable Lewy body dementia who did not respond to the standard treatment and did not want to take medications showed improvement in not only motor symptoms but also NMSs after integrative Korean medicine treatment.

Study on Stable Gait Generation of Quadruped Walking Robot Using Minimum-Jerk Trajectory and Body X-axis Sway (최소저크궤적과 X축-스웨이를 이용한 4족 보행로봇의 안정적 걸음새 연구)

  • Lee, Dong-Goo;Shin, Wu-Hyeon;Kim, Tae-Jung;Lee, Jeong-Ho;Lee, Young-Seok;Hwang, Heon;Choi, Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.170-177
    • /
    • 2019
  • In this paper, three theories for improving the stability of quadruped robot are presented. First, the Minimum-Jerk Trajectory is used to optimize the leg trajectory. Second, we compare the newly proposed sine wave and the conventional LSM in this paper based on the Jerk value. Third, we calculate the optimum stride of the sway through repetitive robot simulation using ADAMS-MATLAB cosimulation. Through the above process, the improvement of the robot walking is compared with the existing theory. First, the average gradient of the point where the leg trajectory changes rapidly was reduced from at least 1.2 to 2.9 by using the Minimum-Jerk targetory for the movement of the body and the end of the leg during the first walk, thereby increasing the walking stability. Second, the average Jerk was reduced by 0.019 on the Z-axis, 0.457 on the X-axis, and 0.02, 3D on the Y-axis by 0.479 using the Sin wave type sways presented in this paper, rather than the LSM(Longitude Stability Margin) method. Third, the length of the optimal stride for walking at least the Jerk value was derived from the above analysis, and the 20cm width length was the most stable.

A Comparative Study on the Characteristics of Friction with/without shoes by Analyzing Bio-signals during walking (보행 시 생체신호분석을 통한 신발 착용 유무에 따른 마찰 특성 비교)

  • Oh, Seong-geun;Kim, Jin-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.59-66
    • /
    • 2018
  • The utilized coefficient of friction (UCOF) as a ratio of the shear force to the normal force on the ground during walking is used to identify the point at which slip is likely to occur. Shoe walking will change the utilized coefficient of friction by shoe design such as sole thickness and hardness, heel shape, and outsole pattern. In this study, subjects are 21 adults (10 female, 11 male, age: $25.2{\pm}2.3yrs$, height: $165.6{\pm}7.2cm$), analysis variables were walking speed, GRF, when the UCOF is maximal, and Tangent of CoP-CoM angle, and correlation analysis with the utilized friction coefficient (UCOF). As a result, First, for the shod walking the time point which UCOF is maximum about heel strike was faster and the magnitude was larger than for barefoot walking. Second, the correlation between the tangent of CoP-CoM and UCOF of right foot was higher at the left heel striking point (UCOF2_h) which occurred in the post propulsion phase than at the right heel striking point (UCOF1_h). This suggests that the right foot UCOF is related to the braking phase of left foot( which is the propulsion phase of right foot) rather than the braking phase of right foot.