• Title/Summary/Keyword: Gain-switching

Search Result 282, Processing Time 0.025 seconds

Discrete-Time Sliding Mode Control with SIIM Fuzzy Adaptive Switching Gain

  • Chai, Chang-Hyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • This paper focuses on discrete-time sliding mode control with SIIM fuzzy adaptive switching gain. The adaptive switching gain is calculated using the simplified indirect inference fuzzy logic. Two fuzzy inputs are the normal distance from the present state trajectory to the switching function and the distance from the present state trajectory to the equilibrium state. The fuzzy output $f_{out}$(k) out f k is used to adjust the speed the adaptation law depending on the location of the state trajectory. The simulation results showed that the proposed method had no chattering in case of uncertain parameter without disturbance. Moreover the convergent rate of the switching gain was faster and more stable even in case of disturbance.

Gain Tuning for SMCSPO of Robot Arm with Q-Learning (Q-Learning을 사용한 로봇팔의 SMCSPO 게인 튜닝)

  • Lee, JinHyeok;Kim, JaeHyung;Lee, MinCheol
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.221-229
    • /
    • 2022
  • Sliding mode control (SMC) is a robust control method to control a robot arm with nonlinear properties. A high switching gain of SMC causes chattering problems, although the SMC allows the adequate control performance by giving high switching gain, without the exact robot model containing nonlinear and uncertainty terms. In order to solve this problem, SMC with sliding perturbation observer (SMCSPO) has been researched, where the method can reduce the chattering by compensating the perturbation, which is estimated by the observer, and then choosing a lower switching control gain of SMC. However, optimal gain tuning is necessary to get a better tracking performance and reducing a chattering. This paper proposes a method that the Q-learning automatically tunes the control gains of SMCSPO with an iterative operation. In this tuning method, the rewards of reinforcement learning (RL) are set minus tracking errors of states, and the action of RL is a change of control gain to maximize rewards whenever the iteration number of movements increases. The simple motion test for a 7-DOF robot arm was simulated in MATLAB program to prove this RL tuning algorithm. The simulation showed that this method can automatically tune the control gains for SMCSPO.

Design of Impulse generator Using Gain-Switched Semiconductor Laser for UWB (반도체 레이저의 이득스위칭을 이용한 UWB 임펄스 발생기 설계)

  • Kwon Soon-young;Kim Bum-in;Park Chong-dae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.61-66
    • /
    • 2005
  • In this paper, we implemented a impulse generator, the one of the part in UWB(Ultra Wide Band) system using step recovery diode(SRD) and gain-switced semiconductor laser. The impulse generator was consisted of four stages; The first stage used SRD to generate the first impulse for gain switching. The second stage controled current for the suitable gain switching condition. The third was the second impulse generator to generate gaussian pulse. For gain switching, the first impulse was applied to semiconductor laser. In the last stage the gain switched impulse was converted into mono-gaussian pulse. The measured mono-gaussian pulse was 360 psec pulse-width and $-70mV \~ +50mV$ amplitude in time domain. In frequency domain its magnitude and bandwidth was, respectively, -41dBm and 3.6GHz. Accordingly, the impulse generator that we suggested was suitable for UWB systems.

The Relationship Between Stability and Gain Band-width Product in the Switching Regulator (스위칭 레귤레이터의 안전성과 이득대역폭적과의 관계)

  • Kim, H.J.;Lee, I.H.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.399-402
    • /
    • 1988
  • In this paper, the relationship between stability and gain band-width product (GB) is clear ed by evaluating the feedback gain in the buck-boost switching regulator. Especially, considering the effect of the right-half-plane pole on the stability, we found available region of GB on the stability with the one pole compensation for the feedback circuit.

  • PDF

A Fast-Switching Current-Pulse Driver for LED Backlight (LED 백라이트를 위한 고속 스위칭 전류-펄스 드라이버)

  • Yang, Byung-Do;Lee, Yong-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.39-46
    • /
    • 2009
  • A fast-switching current-pulse driver for light emitting diode (LED) backlight is proposed. It uses a regulated drain current mirror (RD-CM) [1] and a high-voltage NMOS transistor (HV-NMOS). It achieves the fast-response current-pulse switching by using a dynamic gain-boosting amplifier (DGB-AMP). The DGB-AMP does not discharge the large HV-NMOS gate capacitance of the RD-CM when the output current switch turns off. Therefore, it does not need to charge the HV-NMOS gate capacitance when the switch turns on. The proposed current-pulse driver achieves the fast current switching by removing the repetitive gate discharging and charging. Simulation results were verified with measurements performed on a fabricated chip using a 5V/40V 0.5um BCD process. It reduces the switching delay to 360ns from 700ns of the conventional current-pulse driver.

Cavity-Length-Dependent Spectral and Temporal Characteristics of the Quantum Wire Laser (양자선 레이저의 공진기 길이 변화에 따른 시간적 및 공간적 특성)

  • Choi, Young-Chul;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1094-1097
    • /
    • 2003
  • In this paper, the cavity-length-dependent spectral and temporal characteristics of a V-groove AlGaAs-GaAs quantum wire (QWR) laser at each subband were investigated. At short cavity lasers less than $300{\mu}m$, a discrete wavelength switching from the n=1 to the n=2 subband occurred due to the increased threshold gain, resulting from the increased cavity loss. Using the characteristic of the wavelength shift from n=1 to the n=2 subband with shortening the cavity length, ultrafast lasing behaviors under gain switching at the n=1 and the n=2 subband transition were demonstrated and compared.

  • PDF

Fuzzy Controlled ZVS Asymmetrical PWM Full-bridge DC-DC Converter for Constant load High Power Applications

  • Marikkannan., A;Manikandan., B.V
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1235-1244
    • /
    • 2017
  • This paper proposes a fuzzy logic controlled new topology of high voltage gain zero voltage switching (ZVS) asymmetrical PWM full-bridge DC-DC boost converter for constant load and high power applications. The APWM full-bridge stage provides high voltage gain and soft-switching characteristics increase the efficiency and reduce the switching losses. Fuzzy logic controller (FLC) improves the performance and dynamic characteristics of the proposed converter. A comparison with a classical proportional-integral (PI) controller demonstrates the high performances of the proposed technique in terms of effective output voltage regulation under different operating conditions. Simulation is done by integrating two different simulation platforms $PSIM^{(R)}$ and $Matlab^{(R)}/Simulink^{(R)}$ by using SimCoupler tool of $PSIM^{(R)}$. Experimental results using 120W load have been provided to validate the results.

Loss Analysis and Soft-Switching Behavior of Flyback-Forward High Gain DC/DC Converters with a GaN FET

  • Li, Yan;Zheng, Trillion Q.;Zhang, Yajing;Cui, Meiting;Han, Yang;Dou, Wei
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.84-92
    • /
    • 2016
  • Compared with Si MOSFETs, the GaN FET has many advantages in a wide band gap, high saturation drift velocity, high critical breakdown field, etc. This paper compares the electrical properties of GaN FETs and Si MOSFETs. The soft-switching condition and power loss analysis in a flyback-forward high gain DC/DC converter with a GaN FET is presented in detail. In addition, a comparison between GaN diodes and Si diodes is made. Finally, a 200W GaN FET based flyback-forward high gain DC/DC converter is established, and experimental results verify that the GaN FET is superior to the Si MOSFET in terms of switching characteristics and efficiency. They also show that the GaN diode is better than the Si diode when it comes to reverse recovery characteristics.

Design Consideration of Half-Bridge LLC Resonant Converter

  • Choi, Hang-Seok
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • LLC resonant converters display many advantages over the conventional LC series resonant converter such as narrow frequency variation over wide range of load and input variation and zero voltage switching even under no load conditions. This paper presents analysis and design consideration for the half bridge LLC resonant converter. Using the fundamental approximation, the gain equation is obtained, where the leakage inductance in the transformer secondary side is also considered. Based on the gain equation, the practical design procedure is investigated to optimize the resonant network for a given input/output specifications. The design procedure is verified through an experimental prototype of the 115W half-bridge LLC resonant converter.

Performance of an Adaptive Modulation System Using Antenna Switching (안테나 교환을 사용하는 적응 변조 시스템의 성능 분석)

  • 임창헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.907-914
    • /
    • 2004
  • In this paper, we propose an application of the receiver antenna switching to an conventional adaptive modulation system and derived the optimal antenna switching threshold of the system to maximize the average transmission bit rate and analyzed its performance. Also, we compare the performances of the presented scheme with those of an adaptive modulation using the antenna selection diversity and the one with a single antenna in terms of the average number of bits per symbol and the probability of no transmission. Performance comparison results show that the proposed system has an SNR gain of 1.4 dB over the adaptive modulation using a single antenna when the average number of bits per a symbol is two and yields an SNR gain of 6 dB for maintaining the probability of no transmission at the level of 0.1.