• Title/Summary/Keyword: Gain Correction

Search Result 159, Processing Time 0.025 seconds

A Pediatric Case of AVPR2-related Nephrogenic Syndrome of Inappropriate Antidiuresis

  • Bae, Hyunwoo;Baek, Hee Sun;Jang, Hae Min;Lee, Eun Joo;Cho, Min Hyun
    • Childhood Kidney Diseases
    • /
    • v.24 no.2
    • /
    • pp.126-130
    • /
    • 2020
  • Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a rare X-linked genetic condition caused by a gain-of-function mutation of arginine vasopressin receptor 2 gene, AVPR2. We report the case of a male neonate diagnosed with NSIAD based on his DNA sequence of the AVPR2 gene and the clinical course. He demonstrated a complete correction of hyponatremia using oral urea. We suggest that (1) sequencing analysis of the AVPR2 gene ought to be done in newborns with prolonged euvolemic hyponatremia, hypo-osmolality, high urinary sodium and normal/low or undetectable AVP levels, and that (2) oral urea is a safe and effective treatment option in infants diagnosed with NSIAD until the patients are grown-up.

PC-based Processing of Shallow Marine Multi-channel Seismic Data (PC기반의 천해저 다중채널 탄성파 자료의 전산처리)

  • 공영세;김국주
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.116-124
    • /
    • 1995
  • Marine, shallow seismic data have been acquired and processed by newly developed multi-channel(6 channel), PC-based digital recording and processing system. The digital processing system includes pre-processing, swell-compensation filter, frequency filter, gain correction, deconvolution, stacking, migration, and plotting. The quality of processed sections is greatly enhanced in terms of signal-to-noise ratio and vertical/horizontal resolution. The multi-channel, digital recording, acquisition and processing system proved to be and economical, efficient and easy-to-use marine shallow seismic tool.

  • PDF

An Iterative MUSIC-Based DOA Estimation System Using Antenna Direction Control for GNSS Interference

  • Seo, Seungwoo;Park, Youngbum;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • This paper introduces the development of the iterative multiple signal classification (MUSIC)-based direction-of-arrival (DOA) estimation system using a rotator that can control the direction of antenna for the global navigation satellite system (GNSS) interference. The system calculates the spatial spectrum according to the noise eigenvector of all dimensions to measure the number of signals (NOS). Also, to detect the false peak, the system adjusts the array antenna's direction and checks the change's peak angles. The phase delay and gain correction values for system calibration are calculated in consideration of the chamber's structure and the characteristics of radio waves. The developed system estimated DOAs of interferences located about 1km away. The field test results show that the developed system can estimate the DOA without NOS information and detect the false peak even though the inter-element spacing is longer than the half-wavelength of the interference.

Frequency Responses of Ambulatory ECG Systems and Their Correction by a Compensation Circuit

  • Iwao, K.;Yokoi, A.;Suzuki, S.;Goto, T.;Doniwa, K.;Okajima, M.
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 1990
  • Frequency responses of ambulatory electrocardiogram systems were measured. Phase shift was assessed by our improved Wagner's method. The characteristics of the systems were found much worse than that of ordinary ECG equipment both in gain and phase responses. The decay of -3dB in amplitude observed in 0.2Hz and the lead of 45 dog in phase was observed in 0.6Hz. In order to investigate which of these 2 responses play major role in generating false S -T deviation, mathe- matical filters were Composed in a computer and actual ECGs were fed. The false S-T deviation were found to be caused mostly by enormous lead in phase, and then, the compensation circuit to diminish the lead in phase was inserted in the commercial systemes. The compensated systems showed no false deviation in S-T segment.

  • PDF

Double Step-Up PFC Converter Using Asymmetrical PWM Scheme (비대칭 PWM 방식을 이용한 이중 승압 기능을 갖는 PFC 컨버터)

  • Yeongjin Kim;Jaeseong Lim;Honnyong Cha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.8-14
    • /
    • 2023
  • This paper proposes a PFC converter with a double step-up function using an asymmetrical PWM scheme. For the conventional PWM scheme, the input voltage range, which maintains a double step-up function, is limited because the proposed converter has different voltage gains and characteristics when the duty ratio(D) is less than 0.5. The proposed converter has a constant voltage gain regardless of the magnitude of the input voltage and can achieve output voltage balancing by using the asymmetrical PWM scheme. A 1.6-kW prototype of the proposed converter was built and tested to verify the performance.

Treatment planning of Lung Cancer with Density corrected Computed Tomography (밀도를 입력한 CT planning을 이용한 Lung Cancer의 치료계획)

  • 김성규;김명세;신세원;홍정숙
    • Progress in Medical Physics
    • /
    • v.4 no.2
    • /
    • pp.19-25
    • /
    • 1993
  • Treatment planning of lung cancer with density corrected Computed tomography. Eighty-seven patients with lung cnacer who had radiation therapy in Yeungnam University Medical Center between, April 1 1990 and Aug. 30 1993 were retrospectively evaluated total tumor dose, dose distribution, field correction, and loading change, compared with contour or CT image planning and density corrected CT planning. In dose distribution, higher dose was calculated in compare with density corrected CT planning less than 5% difference were found in 45 patient(52%), 5-10% in 25 patients (29%), 10-15% in 15 patients (17%) and over 15% in 2 patients (2%). Correction of treatment field was performed in 18 patients (21%) and changing of dose loading was given in 15 patients (17%). In conclusion, we emphasize that density corrected CT planning is the very important factor which contribute to increase therapeutic gain by exact selection of target volume, target dose, normal tissue dose and dose of critical organ.

  • PDF

Lightweight video coding using spatial correlation and symbol-level error-correction channel code (공간적 유사성과 심볼단위 오류정정 채널 코드를 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.188-199
    • /
    • 2008
  • In conventional video coding, encoder complexity is much higher than that of decoder. However, investigations for lightweight encoder to eliminate motion prediction/compensation claiming most complexity in encoder have recently become an important issue. The Wyner-Ziv coding is one of the representative schemes for the problem and, in this scheme, since encoder generates only parity bits of a current frame without performing any type of processes extracting correlation information between frames, it has an extremely simple structure compared to conventional coding techniques. However, in Wyner-Ziv coding, channel decoding errors occur when noisy side information is used in channel decoding process. These channel decoding errors appear more frequently, especially, when there is not enough correlation between frames to generate accurate side information and, as a result, those errors look like Salt & Pepper type noise in the reconstructed frame. Since this noise severely deteriorates subjective video quality even though such noise rarely occurs, previously we proposed a computationally extremely light encoding method based on selective median filter that corrects such noise using spatial correlation of a frame. However, in the previous method, there is a problem that loss of texture from filtering may exceed gain from error correction by the filter for video sequences having complex torture. Therefore, in this paper, we propose an improved lightweight encoding method that minimizes loss of texture detail from filtering by allowing information of texture and that of noise in side information to be utilized by the selective median filter. Our experiments have verified average PSNR gain of up to 0.84dB compared to the previous method.

Modulation Transfer Function with Aluminum Sheets of Varying Thickness (다양한 두께의 알루미늄 판을 이용한 MTF 측정에 관한 연구)

  • Rhee, Dong Joo;Kim, Me Young;Moon, Young Min;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.55-63
    • /
    • 2016
  • We studied the method to gain a clear LSF using a thick aluminum sheet and to acquire the spatial resolution value with a high accuracy for a low spatial resolution imaging modality. In this study, aluminum sheets with thicknesses varying from 0.3 mm to 1.2 mm were tested to derive a modulation transfer function (MTF) for the oversampling and non-oversampling methods. The results were evaluated to verify the feasibility of the use of thick sheets for periodic quality assurance. Oversampling was more accurate than non-oversampling, and an aluminum sheet with a correction factor less than 2 at the cut-off frequency, which was less than 0.8 mm in this case, was confirmed to be suitable for MTF measurements. Therefore, MTF derivation from a thick aluminum sheet with thickness correction is plausible for a medical imaging modality.

Single chip multi-function peripheral image processor with unified binarization architecture (통합된 이진화 구조를 가진 복합기용 1-Chip 영상처리 프로세서의 개발)

  • Park, Chang-Dae;Lee, Eul-Hwan;Kim, Jae-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.34-43
    • /
    • 1999
  • A high-speed image processor (HIP) is implemented for a high-speed multi-function peripheral. HIP has a binarization architecture with unified data path. It has the pixel-by-pixel pipelined processing to minimize size of the external memory. It performs pre-processing such as shading correction, automatic gain control (AGC), and gamma correction, and also drives external CCD or CIS modules. The pre-processed data can be enlarged or reduced. Various binarizatin algorithms can be processed in the unified archiecture. The embedded binarization algorithms are simple thresholding, high pass filtering, dithering, error diffusion, and thershold modulated error diffusion. These binarization algorithms are unified based on th threshold modulated error diffusion. The data path is designed to share the common functional block of the binarization algorithms. The complexity of the controls and the gate counts is greatly reduced with this novel architecture.

  • PDF

Development of Brightness Correction Method for Mosaicking UAV Images (무인기 영상 병합을 위한 밝기값 보정 방법 개발)

  • Ban, Seunghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1071-1081
    • /
    • 2021
  • Remote Sensing using unmanned aerial vehicles(UAV) can acquire images with higher time resolution and spatial resolution than aerial and satellite remote sensing. However, UAV images are photographed at low altitude and the area covered by one image isrelatively narrow. Therefore multiple images must be processed to monitor large area. Since UAV images are photographed under different exposure conditions, there is difference in brightness values between adjacent images. When images are mosaicked, unnatural seamlines are generated because of the brightness difference. Therefore, in order to generate seamless mosaic image, a radiometric processing for correcting difference in brightness value between images is essential. This paper proposes a relative radiometric calibration and image blending technique. In order to analyze performance of the proposed method, mosaic images of UAV images in agricultural and mountainous areas were generated. As a result, mosaic images with mean brightness difference of 5 and root mean square difference of 7 were avchieved.