• Title/Summary/Keyword: Gage Plate

Search Result 31, Processing Time 0.022 seconds

A STUDY ON THE MEASUREMENT OF RESIDUAL STRESS ACCORDING TO WELDING CONDITION OF STS304

  • Lee, Jin-Woo;Park, Won-Doo;Ko, Joon-Bean;Lee, Young-Ho;Shizuo Mukae;Kazumasa Nishio
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.652-656
    • /
    • 2002
  • The HDM(Hole Drilling Method) is a relatively simple and accurate method in measuring residual stress of welded metal. Various methods of evaluating residual stress are studied in welding field. The method of cutting holes on the plate much affects the accuracy of result. Especially for the hard material like stainless steel difficult to cut preciously is difficult to measure residual stress on welded metal. Because heat conduction of stainless steel is lower than other general steel, the magnitude of residual stress might be different as to changing of welding conditions. Therefore, The distribution of residual stress on the STS304 steel after welding using HDM is evaluated in this paper.

  • PDF

The Strain Measurement of Butt Welded Zone by the Laser System (레이저 계측에 의한 맞대기 용접부의 스트레인 측정)

  • 성백섭;차용훈;박창언;김일수;김덕중;이연신;손준식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.155-161
    • /
    • 2001
  • Currently knowledge of strain in welds has mainly been obtained from strain gaging method; that is directly attaching most of the material to the gage. The very few non-contact method are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. The dissertation is on the measurement of the strain caused by the characteristics and the temperature changes of the TIG welded zone which is used with 3D ESPI system that is functionally modified through the laser ESPI system. This system employed the aluminum sheet-metal which are mainly used for the steel plate such as for the electronics, chemistry, food instrument and electronic appliances.

  • PDF

A Fracture Mechanics Study on the Fatigue Crack Growth Behaviors in Aluminum Alloy Weldments (알루미늄 합금 용접부의 피로균열성장거동에 관한 파괴력학적 연구)

  • 차용훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.31-39
    • /
    • 1996
  • The objective of this study is to investigate the influence of welding residual stresses on the fatigue crack growth behavior of cracks located transverse to the weld bead. For this purpose, G. T. A (Gas Tungsten Arc) welding was performed on hte Al alloy 1100-O plate and the same initial crack is made on HAZ(Heat Affected Zone), weld metal and base meta respectively. Specimens were used CT(Compact Tension) specimens. Initial welding residual stresses were measured by using strai gage sectioning method. All specimens were tested under constant amplitude load with stress ratio R=0.1, It is possible to predict fatigue crack growth behaviors and the fatigue life, using numerical analysis together with distribution of initial residual stress and the values of C and m obtained from $da/dN-{\Delta}K$

  • PDF

Analysis of the Residual Stresses and Fatigue Strenth in Aluminum Alloy Weldments (AI 합금 용접부의 잔류응력 및 피로강도 해석)

  • 차용훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.177-182
    • /
    • 1996
  • The objective of this thesis is to investigate the influence of welding residual stresses on the fatigue growth behavior of welding residual stresses on the fatigue growth behavior of cracks located transverse to the weld bead. For this purpose, G.T.A. (Gas Tungsten Arc) welding was performed on the Al. Alloy 1100-0 plate and the same initial crack is made on HAZ(Heat Affected Zone), weld metal and base metal respectively. C.T.(Compact Tension) specimens were used as experimental material. Initial welding residual stresses were measured by using strain gage sectioning method. All specimens were tested under constant amplitude load with stress ratio R=0.1

  • PDF

Analysis of Residual Stresses Induced by Cold Expansion Using Finite Element Method (유한요소법을 이용한 홀 확장 잔류응력 해석)

  • Kim, Cheol;Yang, Won-Ho;Heo, Seong-Pil;Jeong, Gi-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.46-51
    • /
    • 2002
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. The residual stress profile depends on the parameters of cold expansion, which are expanding rate, inserting direction of mandrel, material properties dtc. Despite its importance to aerospace industiries, little attention has been devoted to the accurate modeling of the process. In this paper, three-dimensional finite element simulations have been conducted for the cold expansion in an aluminium plate in order to predict the magnitude and distribution of the residual stress. To prove the results of FE analysis, the residual strain was measured by strain gage in cold expansion test. Maximum compressive residual stress could be increase about 7 percentage using the 2-step cold expansion method.

Design of 3-component Force/Moment Sensor with Force/Moment Ratio of Wide Range (넓은 범위의 힘/모멘트비를 갖는 3분력 힘/모멘트 센서 설계)

  • Kim, Gap-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.214-221
    • /
    • 2001
  • This paper describes the design of 3-component force/moment sensor with the force and moment ratio of wide range. It can measure the x-direction force Fx, y-direction force Fy and z-direction moment Mz simultaneously. In order to accurately measure forces and moment using 3-component force/moment sensor, it should get suitable force and moment ratio(the ratio of force Fx=200 N and moment Mz=20 Nm is ten to one), and small interference error. In this paper, in order to design the 3-component force/moment sensor with the force and moment ratio of wide range, the procedures are performed as follow : 1) the derivation of the equations to predict the bending strains on the surfaces of the plate-beams under the force or the moments, 2) the determination of the size of the sensing elements of the force/moment sensor by using the derived equations, 3) the Finite Element Method(FEM) analysis and the characteristic test for confirming the strains from the theory analysis, 4) the selection of the attachment locations of the strain gages of each sensor, 5) the analysis of the rated strain and the interference error at the attachment location of strain gages. It reveals that the rated strains calculated from the derived equations make a good agreement with the results from the Finite Element Method analysis and the characteristic test.

  • PDF

Performance Evaluation of Micro-nozzle Using Cold Gas Propulsion System (냉가스 추진장치를 이용한 마이크로 노즐의 성능평가)

  • Jung, Sung-Chul;Kim, Youn-Ho;Oh, Hwa-Young;Myong, Rho-Shin;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.42-49
    • /
    • 2007
  • In this study, we analyzed flow characteristics of micro-nozzles for basic research to develop micro propulsion system. Cold gas propulsion system was used, and micro-nozzles having nozzle throat diameters of 1.0, 0.5, 0.25 mm were fabricated with EDM method. Thrust was measured through the use of plate-spring and strain gage based thrust measurement system, and flow characteristics of micro-nozzles were analyzed under ambient condition and vacuum condition. We used argon and nitrogen gases as propellant, and compared experimental results with CFD analysis. From the result, we verified the flow losses of viscosity and back-pressure caused by minimization of nozzle.

Development of Calf Link Force Sensors of Walking Assist Robot for Leg Patients (다리 환자를 위한 보행보조로봇의 종아리 링크 3축 힘센서 개발)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.114-121
    • /
    • 2017
  • This paper describes the design and fabrication of a three-axis force sensor with parallel plate beams (PPSs) for measuring the calf force while a patient with a walking assist robot is walking. Current walking assist robots can't measure the weight of the patient's leg and the robot's leg which required for robot control. So, the three-axis force sensor in the calf link is designed and manufactured, it is composed of a Fx force sensor, a Fy force sensor and a Fz force sensor. The three-axis force sensor was designed using by FEM(Finite Element Method), and fabricated using strain-gages. The characteristics experiment of the three-axis force sensor was carried out respectively. The test results indicated that the repeatability error and the non-linearity error of three-axis force sensor was less than 0.04% respectively. Therefore, the fabricated three-axis force sensor in the calf link can be used to measure the patient's calf force in the walking assist robot.

The Strain Measurement of One Point Spot Welded Zone Using the 3-D ESPI (3-D ESPI법을 이용한 단점용접부의 변형률 측정)

  • Cha, Y.H.;Kang, D.J.;Jang, H.;Jang, K.C.;Sung, S.B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.597-601
    • /
    • 2008
  • Currently knowledge of strain in welds has mainly been obtained from strain gaging method: that is directly attaching most of the material to the gage. The very few non-contact methods are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. A method of study is on the measurement of the strain caused by the characteristics of the spot welded zone which is used with 3-D ESPI system that is functionally modified through the laser ESPI(Electronic Speckle Pattern Interferometry) system. This system employed the SGCC 1.2t which are mainly used for the steel plate such as automobile, structure, building material and electronic appliances.

The Strain Analysis by Noncontact Measurement Method in the Steel Plate Welded Zone of Automobile (비접촉 계측법에 의한 자동차 판금용접부의 스트레인 해석)

  • Kim, In-Ju;Park, Chang-Eon;Sung, Baek-Sub;Heo, Up
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1521-1524
    • /
    • 2003
  • Currently the plates used for the various structures has a tendency to being slim to the degree of the sheet metal vis-a-vis the overall measurements of the structure, and the conditions of their usage and load have been getting diverse. As the structure material has been used more and more under the various conditions, the necessity of the strength analysis is to be required. While most of these methods are simply based on the strain gaging method; that is, directly attaching most of the material to the gage, using the non-contact method is still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. Therefore, this dissertation is on the measurement of the strain caused by the characteristics of the TIG welded zone which is used with 3D ESPI system that is functionally modified through the laser ESPI system.

  • PDF