• Title/Summary/Keyword: GafChromic film

Search Result 18, Processing Time 0.065 seconds

GafChromic Film Dosimetry for Stereotactic Radiosurgery with a Linear Accelerator (선형가속기를 이용한 정위방사선 치료 시 GafChromic Film을 이용한 선량측정)

  • Han Seung Hee;Cho Byung Chul;Park Suk Won;Oh Do Hoon;Park Hee Chul;Bae Hoon Sik
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2003
  • Purpose: The purpose of this study was to evaluate whether a GafChromic film applied to stereotactic radiosurgery with a linear accelerator could provide information on the value for acceptance testing and quality control on the absolute dose and relative dose measurements and/or calculation of treatment planning system. Materials and methods: A spherical acrylic phantom, simulating a patient's head, was constructed from three points. The absolute and relative dose distributions could be measured by inserting a GafChromic film into the phantom. We tested the use of a calibrated GafChromic film (MD-55-2, Nuclear Associate, USA) for measuring the optical density. These measurements were achieved by irradiating the films with a dose of 0-112 Gy employing 6 MV photon. To verify the accuracy of the prescribed dose delivery to a target isocenter using a five arc beams (irradiated in 3 Gy per one beam) setup, calculated by the Linapel planning system the absolute dose and relative dose distribution using a GafChromic film were measured. All the irradiated films were digitized with a Lumiscan 75 laser digitizer and processed with the RIT113 film dosimetry system. Results: We verified the linearity of the Optical Density of a MD-55-2 GafChromic film, and measured the depth dose profile of the beam. The absolute dose delivered to the target was close to the prescribed dose of Linapel within an accuracy for the GafChromic film dosimetry (of $\pm$3$\%$), with a measurement uncertainty of $\pm$1 mm for the 50$\~$90$\%$ isodose lines. Conclusion: Our results have shown that the absolute dose and relative dose distribution curves obtained from a GafChromic film can provide information on the value for acceptance. To conclude the GafChromic flim is a convenient and useful dosimetry tool for linac based radiosurgery.

Anisotropy in a Few mm Regions from an Ir192 High Dose Rate Source Measured with a GafChromic Film in Acrylic Phantom (아크릴 팬톰에서 GafChromic 필름을 이용한 고선량률 근접 치료용 Ir-192 선원의 근접 거리에서 비등방성 측정)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Park, Jin-Ho;Cho, Byung-Chul;Shin, Dong-Oh;Soo il Kwon;Chun, Ha-Chung;John J K Loh;Kim, Woo-Chul
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Radiochromic film has several advantages; high spatial resolution, relatively low spectral sensitivity, near tissue equivalence and requires no special development procedure. The object of this study was to measure the anisotropy of an Ir-192 source (microSelectron manufactured by Nucletron) in a few mm regions from the source, using the GafChromic film. The GafChromic film was calibrated in the range of 0∼105 Gy, using a 4 MV photon beam, and the anisotropy function measured in an acrylic phantom using the GafChroimic film. The data obtained gave agreement to within 4.4% of the Monte Calro calculation, by J. F. Williamson, at a radial distance of 2.5 mm with polar angles of 50 to 130$^{\circ}$, while a maximum deviation of 17.6% was observed at angles near 140$^{\circ}$and agreement within 3.7% at a radial distance of 5 mm at polar angles between 35 to 150$^{\circ}$ and a maximum deviation of 7.6% was observed at angles near 30$^{\circ}$. A GafChromic film can be used as a more efficient detector for measuring the anisotropy of an HDR $^{192}$ Ir source at close distances than any other detector.

  • PDF

GafChromic RTQA Film Dosimetry for Laser Beam with Photodynamic Therapy (GafChromic RTQA Film을 이용한 광역학적 치료용 레이저의 선질 측정)

  • Lee, Byung Koo;Lim, Hyun Soo;Kenar, Necla
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.73-79
    • /
    • 2013
  • Purpose: The purposes of this study were to measure the dose distribution of Photodynamic therapy(PDT) laser with 635 nm wavelength using GafChromic film. Method & Result: We made each output 300 J by changing mW and sec using the laser beam radiation mode such as C.W(Continuous Wave) mode, Pulse mode and Burst Pulse mode and measured the does at 0 mm and 5 mm of distance from optic fiber catheter end to the film, and at 5 mm distance by changing the angle of the end of the optic fiber catheter as $0^{\circ}$ and $0.5^{\circ}$. The radiated film was scanned and OD(Optical Density) was compared. And two-dimensional isodose curves were obtained and the consistency of shapes was compared. It was confirmed that there was consistency between optic density and the dose radiated on the film when we radiated GafChromic film by changing distance and angle of 300 J output in each radiation mode coordinating mW and sec. Conclusion: In this study, we could identify the stability according to changes in laser beam modes, changes in output according to distance, changes in uniformity according to angle, and beam profiles using GafChromic film, and we could also get two-dimensional isodose curve. It was found that small change in the distance and angle that is made when optic fiber catheter was contacted on the treatment area did not make big effects on the output of beam and the uniformity of dose, and it was also found that GafChromic film could be utilized for the purpose of QA of PDT laser beam.

The Measurement of Ho-166 Absorbed Dose for the Endovascular Irradiation with a Balloon Angio Catheter Using a GafChromic Film (GafChromic 필름을 이용한 Ho-166 의 혈관내 방사선조사를 위한 선량분포 측정)

  • 강해진;조철우;박찬희;오영택;전미선;김영미;박경배
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.151-157
    • /
    • 1999
  • The GafChromic film was used for the dosimetry of a balloon angio catheter filled with the radioisotope HO-166 for endovascular irradiation. The balloon angio catheter was 2 cm long and 3 mm in diameter when inflated. The isotope, Ho-166, was produced by the neutron bombardment using the research reactor in Korea Atomic Energy Research Insititute. Co-60 teletherapy beam was used for making H-D curve for the Gaf-Chromic film. The film dosimetry was measured with a videodensitometer. The radial dose distribution indicated that the absorbed dose dropped to about 20% of the surface dose at the 1 mm away from the balloon surface and at 5 mm position the dose decreased to below 1% of the surface dose. The result also shows that with the specific activity of Ho-l66, 250 mCi/ml it takes 230 seconds to deliver 1200 cGy to the region where is 1mm away from the balloon surface. The concentric isodose curves were also presented. The Ho-166 is an another alternative for endovascualr irradiation to prevent restenosis after PTCA (Percutaneous Trans Coronary Angioplasty)

  • PDF

Feasibility Study of Dose Evaluation of Stereotactic Radiosurgery using GafChromic $EBT^{(R)}$ Film (GafChromic $EBT^{(R)}$ 필름을 이용한 뇌정위방사선치료의 선량분석 가능성 평가)

  • Jang, Eun-Sung;Lee, Chul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • Purpose: We have performed SRS (stereotactic radiosurgery) for avm (arterry vein malformation) and brain cancer. In order to verify dose and localization of SRS, dose distributions from TPS ($X-Knife^{(R)}$ 3.0, Radionics, USA) and GafChromic $EBT^{(R)}$ film in a head phantom were compared. Materials and Methods: In this study, head and neck region of conventional humanoid phantom was modified by substituting one of 2.5 cm slap with five 0.5 cm acrylic plates to stack the GafChromic $EBT^{(R)}$ film slice by slice with 5 mm intervals. Four films and five acrylic plates were cut along the contour of head phantom in axial plane. The head phantom was fixed with SRS head ring and adapted SRS localizer as same as real SRS procedure. CT images of the head phantom were acquired in 5 mm slice intervals as film interval. Five arc 6 MV photon beams using the SRS cone with 2 cm diameter were delivered 300 cGy to the target in the phantom. Ten small pieces of the film were exposed to 0, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 cGy, respectively to calibrate the GafChromic $EBT^{(R)}$ film. The films in the phantom were digitized after 24 hours and its linearity was calibrated. The pixel values of the film were converted to the dose and compared with the dose distribution from the TPS calculation. Results: Calibration curve for the GafChromic $EBT^{(R)}$ film was linear up to 900 cGy. The R2 value was better than 0.992. Discrepancy between calculated from $X-Knife^{(R)}$ 3.0 and measured dose distributions with the film was less than 5% through all slices. Conclusion: It was possible to evaluate every slice of humanoid phantom by stacking the GafChromic EBT film which is suitable for 2 dimensional dosimetry, It was found that film dosimetry using the GafChromic $EBT^{(R)}$ film is feasible for routine dosimetric QA of stereotactic radiosurgery.

  • PDF

Absorbed Dose for the Endovascular Ho-166-DTPA Brachytherapy Using a Balloon Angio Catheter (풍선도자관의 Ho-166-DTPA 흡수선량)

  • 조철우;박찬희;윤석남;강해준;김미화;장지선;박경배
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.98-103
    • /
    • 2002
  • The purpose of this study was to evaluate the absorbed dose to the coronary artery segment from various sized balloon angio catheters. The liquid form of Ho-166 was produced at the KAERI by (n, ${\gamma}$ ) reaction. We used GafChromic film for the estimation of the absorbed dose by beta particles. The exposed films were read using a videodensitometer. Several film exposures were made with varying irradiation times and activities. A modified micrometer was used for the measurement of the absorbed dose distribution near the balloon surface. Four balloons of coronary catheters evaluated were 30 m long and 2.5, 3.0, 3.5 and 4.0 mm in diameter. All doses are plotted in units of Gy/min/GBq/ml as a function of radial distance in mm from the surface of balloon. The absorbed dose rate was 0.86, 1.01, 1.11 and 1.24 Gy/min/GBq/ml at a balloon surface for various balloon diameter 2.5, 3.0, 3.5 and 4.0 mm respectively. Using a vacuum pump, the air in the balloon was evacuated prior to instillation of the Ho-166 source. By removing air bubbles in the balloon, the absorbed dose distribution was more uniform.

  • PDF

Development of Preliminary Quality Assurance Software for $GafChromic^{(R)}$ EBT2 Film Dosimetry ($GafChromic^{(R)}$ EBT2 Film Dosimetry를 위한 품질 관리용 초기 프로그램 개발)

  • Park, Ji-Yeon;Lee, Jeong-Woo;Choi, Kyoung-Sik;Hong, Semie;Park, Byung-Moon;Bae, Yong-Ki;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.113-119
    • /
    • 2010
  • Software for GafChromic EBT2 film dosimetry was developed in this study. The software provides film calibration functions based on color channels, which are categorized depending on the colors red, green, blue, and gray. Evaluations of the correction effects for light scattering of a flat-bed scanner and thickness differences of the active layer are available. Dosimetric results from EBT2 films can be compared with those from the treatment planning system ECLIPSE or the two-dimensional ionization chamber array MatriXX. Dose verification using EBT2 films is implemented by carrying out the following procedures: file import, noise filtering, background correction and active layer correction, dose calculation, and evaluation. The relative and absolute background corrections are selectively applied. The calibration results and fitting equation for the sensitometric curve are exported to files. After two different types of dose matrixes are aligned through the interpolation of spatial pixel spacing, interactive translation, and rotation, profiles and isodose curves are compared. In addition, the gamma index and gamma histogram are analyzed according to the determined criteria of distance-to-agreement and dose difference. The performance evaluations were achieved by dose verification in the $60^{\circ}$-enhanced dynamic wedged field and intensity-modulated (IM) beams for prostate cancer. All pass ratios for the two types of tests showed more than 99% in the evaluation, and a gamma histogram with 3 mm and 3% criteria was used. The software was developed for use in routine periodic quality assurance and complex IM beam verification. It can also be used as a dedicated radiochromic film software tool for analyzing dose distribution.

Comparative evaluation for leaf position accuracy according to gantry angle variation in MLC quality assurance using electronic portal imaging device(EPID) and GafChromic EBT3 film (전자포탈영상장치(EPID)와 GafChromic EBT3 film을 이용한 다엽콜리메이터 정도관리 시 갠트리 각도 변화에 따른 엽의 위치 정확성 비교 평가)

  • Yang, Myung Sic;Park, Ju Kyeong;Lee, Seung Hun;Lee, Sun Young;Kim, Jung Soo;Kwon, Hyoung Cheol;Kim, Yang Su
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.83-91
    • /
    • 2017
  • Objectives: The purpose of this study was to evaluate the error of the leaf position accuracy of the MLC due to the gravity effect according to the gantry angle by using picket fence test using EPID and GafChromic EBT3 film. Materials and Methods: A 5 cm solid phantom was placed on the table and the SAD was set to 100 cm. The EBT3 film was placed exactly over the solid phantom and covered a 1.5 cm solid phantom and the picket fence test was performed. The EPID was measured under the same conditions as the EBT3 film at SID 100 cm. The gantry angles were measured at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$ in order to evaluate the position of the MLC according to the gantry angle. For the geometric evaluation of the MLC, the leaf position accuracy of the MLC was analyzed using the analysis program. Results: In case of EPID, when the gantry angle was changed to $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, the difference of the position errors of the leaves was 0.18 mm, 0.31 mm, 0.20 mm, 0.26 mm on the average and the maximum values of the errors were respectively 0.44 mm, 0.54 mm, 0.34 mm, 0.44 mm. In case of EBT3 film, when the gantry angle was changed to $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, the difference of the position errors of the leaves was 0.19 mm, 0.21 mm, 0.19 mm, 0.31 mm on the average and the maximum values of the errors were respectively 0.35 mm, 0.45 mm, 0.36 mm, 0.48 mm. Conclusion: In this study, we analyzed the position error of the leaf of the MLC according to the gantry angle, and confirmed the position error of the leaf by gravity effect. As a result of comparing the leaf position accuracy using EPID and EBT3 film according to the variation of gantry angle, a larger error occurred in the error analysis method using EPID than that of EBT3 film. Therefore, in the case of IMRT based on MLC, as well as verification of accurate dosimetry should be conducted, it is considered that the quality control and verification for the precise operation of the MLC will be needed. and it is necessary to compare and verify the method of analysis.

  • PDF

Absorbed Dose from Large Balloon Filled with Liquid Ho-166

  • Joh, Chul-Woo;Park, Chan H.;Lee, Myoung-Hoon;Yoon, Seok-Nam;Kim, Mi-Hwa;Jang, Ji-Sun;Park, Kyung-Bae
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.328-330
    • /
    • 2002
  • Large balloon angio catheter is used for Percutaneous Transluminal Angioplsty(TPA) of the iliac, femoral and renal arteries as well as after Transjugular Intrahepatic portosystemic shunt(TIPS). The use of angioplasty balloon filled with liquid form of radioisotope reduces the rate of restenosis after PTA. The purpose of this study was to evaluate the absorbed dose to the target vessels from various sized large balloon filled with liquid form of Ho-166-DTPA. Four balloons of balloon dilatation catheters evaluated were 5, 6, 8 and 10 mm in diameter. GafChromic film was used for the estimation of the absorbed dose near the surface of the balloon catheters. Absorbed dose rates are plotted in units of Gy/min/GBq/ml as a function of radial distance in mm from the surface of balloon. The absorbed dose rate was 1.1, 1.6, 2.2 and 2.3 Gy/min/GBq/ml at a balloon surface, 0.3, 0.4, 0.5 and 0.6 Gy/min/GBq/ml at 1 mm depth for various balloon diameter 5, 6, 8 and 10 mm in diameter respectively. The study was conducted to estimate the absorbed doses to the vessels from various sized large balloons filled with liquid form of Ho-166-DTPA for clinical trial of radiation therapy after the PTA. The absorbed dose distribution of Ho-166 appeared to be nearly ideal for vascular irradiation since beta range is very short avoiding unnecessary radiation to surrounding normal tissues.

  • PDF

Verification of Skin Dose in Tomotherapy Using the Developed Phantom for Image Based Radiation Treatment System (영상 기반 치료 장비용 팬톰을 이용한 토모테라피 피부 선량 검증)

  • Park, Ji-Yeon;Chang, Ji-Na;Oh, Seung-Jong;Kang, Dae-Gyu;Jung, Won-Gyun;Lee, Jeong-Woo;Jang, Hong-Suk;Kim, Hoi-Nam;Park, Hae-Jin;Kim, Sung-Hwan;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.88-96
    • /
    • 2009
  • Radiation treatment for skin cancer has recently increased in tomotherapy. It was reported that required dose could be delivered with homogeneous dose distribution to the target without field matching using electron and photon beam. Therapeutic beam of tomotherapy, however, has several different physical characteristic and irradiation of helical beam is involved in the mechanically dynamic factors. Thus verification of skin dose is requisite using independent tools with additional verification method. Modified phantom for dose measurement was developed and skin dose verification was performed using inserted thermoluminescent dosimeters (TLDs) and GafChromic EBT films. As the homogeneous dose was delivered to the region including surface and 6 mm depth, measured dose using films showed about average 2% lower dose than calculated one in treatment planning system. Region indicating about 14% higher and lower absorbed dose was verified on measured dose distribution. Uniformity of dose distribution on films decreased as compared with that of calculated results. Dose variation affected by inhomogeneous material, Teflon, little showed. In regard to the measured dose and its distribution in tomotherapy, verification of skin dose through measurement is required before the radiation treatment for the target located at the curved surface or superficial depth.

  • PDF