• Title/Summary/Keyword: GafChromic 필름

Search Result 12, Processing Time 0.029 seconds

Anisotropy in a Few mm Regions from an Ir192 High Dose Rate Source Measured with a GafChromic Film in Acrylic Phantom (아크릴 팬톰에서 GafChromic 필름을 이용한 고선량률 근접 치료용 Ir-192 선원의 근접 거리에서 비등방성 측정)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Park, Jin-Ho;Cho, Byung-Chul;Shin, Dong-Oh;Soo il Kwon;Chun, Ha-Chung;John J K Loh;Kim, Woo-Chul
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Radiochromic film has several advantages; high spatial resolution, relatively low spectral sensitivity, near tissue equivalence and requires no special development procedure. The object of this study was to measure the anisotropy of an Ir-192 source (microSelectron manufactured by Nucletron) in a few mm regions from the source, using the GafChromic film. The GafChromic film was calibrated in the range of 0∼105 Gy, using a 4 MV photon beam, and the anisotropy function measured in an acrylic phantom using the GafChroimic film. The data obtained gave agreement to within 4.4% of the Monte Calro calculation, by J. F. Williamson, at a radial distance of 2.5 mm with polar angles of 50 to 130$^{\circ}$, while a maximum deviation of 17.6% was observed at angles near 140$^{\circ}$and agreement within 3.7% at a radial distance of 5 mm at polar angles between 35 to 150$^{\circ}$ and a maximum deviation of 7.6% was observed at angles near 30$^{\circ}$. A GafChromic film can be used as a more efficient detector for measuring the anisotropy of an HDR $^{192}$ Ir source at close distances than any other detector.

  • PDF

GafChromic Film Dosimetry for Stereotactic Radiosurgery with a Linear Accelerator (선형가속기를 이용한 정위방사선 치료 시 GafChromic Film을 이용한 선량측정)

  • Han Seung Hee;Cho Byung Chul;Park Suk Won;Oh Do Hoon;Park Hee Chul;Bae Hoon Sik
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2003
  • Purpose: The purpose of this study was to evaluate whether a GafChromic film applied to stereotactic radiosurgery with a linear accelerator could provide information on the value for acceptance testing and quality control on the absolute dose and relative dose measurements and/or calculation of treatment planning system. Materials and methods: A spherical acrylic phantom, simulating a patient's head, was constructed from three points. The absolute and relative dose distributions could be measured by inserting a GafChromic film into the phantom. We tested the use of a calibrated GafChromic film (MD-55-2, Nuclear Associate, USA) for measuring the optical density. These measurements were achieved by irradiating the films with a dose of 0-112 Gy employing 6 MV photon. To verify the accuracy of the prescribed dose delivery to a target isocenter using a five arc beams (irradiated in 3 Gy per one beam) setup, calculated by the Linapel planning system the absolute dose and relative dose distribution using a GafChromic film were measured. All the irradiated films were digitized with a Lumiscan 75 laser digitizer and processed with the RIT113 film dosimetry system. Results: We verified the linearity of the Optical Density of a MD-55-2 GafChromic film, and measured the depth dose profile of the beam. The absolute dose delivered to the target was close to the prescribed dose of Linapel within an accuracy for the GafChromic film dosimetry (of $\pm$3$\%$), with a measurement uncertainty of $\pm$1 mm for the 50$\~$90$\%$ isodose lines. Conclusion: Our results have shown that the absolute dose and relative dose distribution curves obtained from a GafChromic film can provide information on the value for acceptance. To conclude the GafChromic flim is a convenient and useful dosimetry tool for linac based radiosurgery.

The Measurement of Ho-166 Absorbed Dose for the Endovascular Irradiation with a Balloon Angio Catheter Using a GafChromic Film (GafChromic 필름을 이용한 Ho-166 의 혈관내 방사선조사를 위한 선량분포 측정)

  • 강해진;조철우;박찬희;오영택;전미선;김영미;박경배
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.151-157
    • /
    • 1999
  • The GafChromic film was used for the dosimetry of a balloon angio catheter filled with the radioisotope HO-166 for endovascular irradiation. The balloon angio catheter was 2 cm long and 3 mm in diameter when inflated. The isotope, Ho-166, was produced by the neutron bombardment using the research reactor in Korea Atomic Energy Research Insititute. Co-60 teletherapy beam was used for making H-D curve for the Gaf-Chromic film. The film dosimetry was measured with a videodensitometer. The radial dose distribution indicated that the absorbed dose dropped to about 20% of the surface dose at the 1 mm away from the balloon surface and at 5 mm position the dose decreased to below 1% of the surface dose. The result also shows that with the specific activity of Ho-l66, 250 mCi/ml it takes 230 seconds to deliver 1200 cGy to the region where is 1mm away from the balloon surface. The concentric isodose curves were also presented. The Ho-166 is an another alternative for endovascualr irradiation to prevent restenosis after PTCA (Percutaneous Trans Coronary Angioplasty)

  • PDF

Feasibility Study of Dose Evaluation of Stereotactic Radiosurgery using GafChromic $EBT^{(R)}$ Film (GafChromic $EBT^{(R)}$ 필름을 이용한 뇌정위방사선치료의 선량분석 가능성 평가)

  • Jang, Eun-Sung;Lee, Chul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • Purpose: We have performed SRS (stereotactic radiosurgery) for avm (arterry vein malformation) and brain cancer. In order to verify dose and localization of SRS, dose distributions from TPS ($X-Knife^{(R)}$ 3.0, Radionics, USA) and GafChromic $EBT^{(R)}$ film in a head phantom were compared. Materials and Methods: In this study, head and neck region of conventional humanoid phantom was modified by substituting one of 2.5 cm slap with five 0.5 cm acrylic plates to stack the GafChromic $EBT^{(R)}$ film slice by slice with 5 mm intervals. Four films and five acrylic plates were cut along the contour of head phantom in axial plane. The head phantom was fixed with SRS head ring and adapted SRS localizer as same as real SRS procedure. CT images of the head phantom were acquired in 5 mm slice intervals as film interval. Five arc 6 MV photon beams using the SRS cone with 2 cm diameter were delivered 300 cGy to the target in the phantom. Ten small pieces of the film were exposed to 0, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 cGy, respectively to calibrate the GafChromic $EBT^{(R)}$ film. The films in the phantom were digitized after 24 hours and its linearity was calibrated. The pixel values of the film were converted to the dose and compared with the dose distribution from the TPS calculation. Results: Calibration curve for the GafChromic $EBT^{(R)}$ film was linear up to 900 cGy. The R2 value was better than 0.992. Discrepancy between calculated from $X-Knife^{(R)}$ 3.0 and measured dose distributions with the film was less than 5% through all slices. Conclusion: It was possible to evaluate every slice of humanoid phantom by stacking the GafChromic EBT film which is suitable for 2 dimensional dosimetry, It was found that film dosimetry using the GafChromic $EBT^{(R)}$ film is feasible for routine dosimetric QA of stereotactic radiosurgery.

  • PDF

Development of Preliminary Quality Assurance Software for $GafChromic^{(R)}$ EBT2 Film Dosimetry ($GafChromic^{(R)}$ EBT2 Film Dosimetry를 위한 품질 관리용 초기 프로그램 개발)

  • Park, Ji-Yeon;Lee, Jeong-Woo;Choi, Kyoung-Sik;Hong, Semie;Park, Byung-Moon;Bae, Yong-Ki;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.113-119
    • /
    • 2010
  • Software for GafChromic EBT2 film dosimetry was developed in this study. The software provides film calibration functions based on color channels, which are categorized depending on the colors red, green, blue, and gray. Evaluations of the correction effects for light scattering of a flat-bed scanner and thickness differences of the active layer are available. Dosimetric results from EBT2 films can be compared with those from the treatment planning system ECLIPSE or the two-dimensional ionization chamber array MatriXX. Dose verification using EBT2 films is implemented by carrying out the following procedures: file import, noise filtering, background correction and active layer correction, dose calculation, and evaluation. The relative and absolute background corrections are selectively applied. The calibration results and fitting equation for the sensitometric curve are exported to files. After two different types of dose matrixes are aligned through the interpolation of spatial pixel spacing, interactive translation, and rotation, profiles and isodose curves are compared. In addition, the gamma index and gamma histogram are analyzed according to the determined criteria of distance-to-agreement and dose difference. The performance evaluations were achieved by dose verification in the $60^{\circ}$-enhanced dynamic wedged field and intensity-modulated (IM) beams for prostate cancer. All pass ratios for the two types of tests showed more than 99% in the evaluation, and a gamma histogram with 3 mm and 3% criteria was used. The software was developed for use in routine periodic quality assurance and complex IM beam verification. It can also be used as a dedicated radiochromic film software tool for analyzing dose distribution.

Absorbed Dose for the Endovascular Ho-166-DTPA Brachytherapy Using a Balloon Angio Catheter (풍선도자관의 Ho-166-DTPA 흡수선량)

  • 조철우;박찬희;윤석남;강해준;김미화;장지선;박경배
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.98-103
    • /
    • 2002
  • The purpose of this study was to evaluate the absorbed dose to the coronary artery segment from various sized balloon angio catheters. The liquid form of Ho-166 was produced at the KAERI by (n, ${\gamma}$ ) reaction. We used GafChromic film for the estimation of the absorbed dose by beta particles. The exposed films were read using a videodensitometer. Several film exposures were made with varying irradiation times and activities. A modified micrometer was used for the measurement of the absorbed dose distribution near the balloon surface. Four balloons of coronary catheters evaluated were 30 m long and 2.5, 3.0, 3.5 and 4.0 mm in diameter. All doses are plotted in units of Gy/min/GBq/ml as a function of radial distance in mm from the surface of balloon. The absorbed dose rate was 0.86, 1.01, 1.11 and 1.24 Gy/min/GBq/ml at a balloon surface for various balloon diameter 2.5, 3.0, 3.5 and 4.0 mm respectively. Using a vacuum pump, the air in the balloon was evacuated prior to instillation of the Ho-166 source. By removing air bubbles in the balloon, the absorbed dose distribution was more uniform.

  • PDF

Verification of Skin Dose in Tomotherapy Using the Developed Phantom for Image Based Radiation Treatment System (영상 기반 치료 장비용 팬톰을 이용한 토모테라피 피부 선량 검증)

  • Park, Ji-Yeon;Chang, Ji-Na;Oh, Seung-Jong;Kang, Dae-Gyu;Jung, Won-Gyun;Lee, Jeong-Woo;Jang, Hong-Suk;Kim, Hoi-Nam;Park, Hae-Jin;Kim, Sung-Hwan;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.88-96
    • /
    • 2009
  • Radiation treatment for skin cancer has recently increased in tomotherapy. It was reported that required dose could be delivered with homogeneous dose distribution to the target without field matching using electron and photon beam. Therapeutic beam of tomotherapy, however, has several different physical characteristic and irradiation of helical beam is involved in the mechanically dynamic factors. Thus verification of skin dose is requisite using independent tools with additional verification method. Modified phantom for dose measurement was developed and skin dose verification was performed using inserted thermoluminescent dosimeters (TLDs) and GafChromic EBT films. As the homogeneous dose was delivered to the region including surface and 6 mm depth, measured dose using films showed about average 2% lower dose than calculated one in treatment planning system. Region indicating about 14% higher and lower absorbed dose was verified on measured dose distribution. Uniformity of dose distribution on films decreased as compared with that of calculated results. Dose variation affected by inhomogeneous material, Teflon, little showed. In regard to the measured dose and its distribution in tomotherapy, verification of skin dose through measurement is required before the radiation treatment for the target located at the curved surface or superficial depth.

  • PDF

Three-Dimensional Dosimetry Using Magnetic Resonance Imaging of Polymer Gel (중합체 겔과 자기공명영상을 이용한 3차원 선량분포 측정)

  • Oh Young-Taek;Kang Haejin;Kim Miwha;Chun Mison;Kang Seung-Hee;Suh Chang Ok;Chu Seong Sil;Seong Jinsil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.264-273
    • /
    • 2002
  • Purpose : Three-dimensional radiation dosimetry using magnetic resonance imaging of polymer gel was recently introduced. This dosimetry system is based on radiation induced chain polymerization of acrylic monomers in a muscle equivalent gel and provide accurate 3 dimensional dose distribution. We planned this study to evaluate the clinical value of this 3-dimensional dosimetry. Materials and Methods: The polymer gel poured into a cylindrical glass flask and a spherical glass flask. The cylindrical test tubes were for dose response evaluation and the spherical flasks, which is comparable to the human head, were for isodose curves. T2 maps from MR images were calculated using software, IDL. Dose distributions have been displayed for dosimetry. The same spherical flask of gel and the same irradiation technique was used for film and TLD dosimetry and compared with each other. Results : The R2 of the gel respond linearly with radiation doses in the range of 2 to 15 Gy. The repeated dosimetry of spherical gel showed the same isodose curves. These isodose curves were identical to dose distributions from treatment planning system especially high dose range. In addition, the gel dosimetry system showed comparable or superior results with the film and TLD dosimetry. Conclusion : The 3-dimensional dosimetry for conformal radiation therapy using MRI of polymer gal showed stable and accurate results. Although more studies are needed for convenient clinical application, it appears to be a useful tool for conformal radiation therapy.

Evaluation of Dosimetric Characteristics of a Double-focused Dynamic Micro-Multileaf Collimator (DMLC) (이중으로 집중된 동적 미세 다엽콜리메이터의 선량학적 특성 평가)

  • Kim, Ae Ran;Seo, Jae-Hyuk;Shin, Hun-Joo;Park, Hyeong Wook;Lee, Ki Woong;Lee, Jae Choon;Kim, Shin-Wook;Kim, Ji Na;Park, Hyeli;Lee, Heui-Kwan;Kang, Young-Nam
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.223-228
    • /
    • 2015
  • Double-focused micro-Multileaf Collimator (${\mu}MLC$) is able to create radiation fields having sharper dose gradients at the field edges than common MLC. Therefore, ${\mu}MLC$ has been used for the stereotactic radiosurgery (SRS) and Stereotactic Radiotherapy (SRT). We evaluated the dosimetric characteristics of a doublefocused Dynamic-${\mu}MLC$ (DMLC) attached to the Elekta Synergy linear accelerator. For this study, the dosimetric parameters including, Percent Depth Dose (PDD), Leaf leakage and penumbra, have been measured by using of the radiochromic films (GafChromic EBT2), EDGE diode detector and three-dimensional water phantom. All datas were measured on 6 MV x-ray. As a result, The DMLC shows transmission below to 1% and because of double-focused construction of the DMLC, the penumbras of fields with DMLC are independent from the field sizes. In this paper, the resulting dosimetric evaluations proved the applicability of the DMLC attached to the Elekta Synergy linear accelerator.

혈관내벽에 홀뮴-166 방사선 분할 조사시 흡수선량 분포

  • 조철우;윤석남;윤준기;이명훈;탁승재;최소연;박경배
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.70-70
    • /
    • 2003
  • 경피적관상동맥성형술(CPTCA)이나 스텐트삽입술 후에 발생하는 재협착을 방지하기 위한 방사선을 조사하는 방법 중에 베타 입자를 방출하는 액체 선원을 catheter풍선 내에 넣어 일정 시간 방사선 조사 시키는 방법이 있다. 조사시킬 혈관의 길이가 길어 한번의 방사선 조사가 어려울 경우 영역을 분할하여 두 번에 나누어 조사할 경우가 있다. 조사영역의 겹치는 부근의 흡수선량이 고선량이나 저선량이 되는가를 알기 위하여 두 풍선간의 접근 거리에 따른 혈관내벽의 흡수선량 분포를 알아보았다. 풍선내의 액체 선원은 Ho-l66을 이용하였고 Ho-l66의 물리적 반감기는 26.8시간이고 최대에너지 1.85 MeV, 평균에너지 0.69 MeV와 최대에너지 1.77 MeV, 평균에너지 0.65 MeV를 갖는 베타 입자를 방출한다. Ho-l66 의 방사선 흡수선량을 측정하기 위하여 GafChromic 필름(Nuclear Associates, Carle Place, NY, USA)을 이용하였고, 방사선이 조사된 필름의 optical density는 videodensitometer(Wellhofer, Schwarzen-bruck, Germany)를 이용하여 값을 읽었다. Catheter 풍선은 직경이 3 mm 이고 길이가 20 mm인 것을 이용하였다. 혈관 내벽의 최대 흡수선량을 표준화하여 겹치는 부분의 흡수선량 분포를 접근 거리에 따라 구하였다. 또한 몬테카를로 시abf레이션으로 확인하였다. 두 풍선의 겹치는 부근의 선량 분포는 풍선 중앙에서 중앙사이의 거리가 21 mm 일 때 중앙에서 20% 증가하였고, 거리가 22 mm일 때와 23 mm일 때 각각 10%와 40%의 감소를 보였다. 풍선 도자의 풍선 안에 베타입자 방출 액체 선원을 넣어 혈관내벽에 방사선 조사하는 방법은 비정거리가 짧아 혈관 내벽 부근에만 방사선을 조사시키고 그 외 중요 장기에는 영향을 덜 미치는 장점이 있다. 그러나 혈관 내벽 표면으로 부터의 거리에 따라 흡수선량이 급격히 떨어지는 분포를 이루기 때문에 두 개의 풍선이 겹치는 부근의 흡수선량은 아주 작은 접근 거리에서도 급격한 변화를 보였다. 따라서 시술 중에 겹치는 부분을 아주 적게 분할하여 정확하게 차례차례로 조사시키기 위해서는 신중한 거리 조정을 하여야 한다.

  • PDF