• 제목/요약/키워드: GacA

검색결과 237건 처리시간 0.026초

표면 처리에 따른 입상활성탄 및 활성탄소섬유의 중금속 흡착 (Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers)

  • 강광철;권수한;김승수;최종원;전관식
    • 분석과학
    • /
    • 제19권4호
    • /
    • pp.285-289
    • /
    • 2006
  • 본 연구에서는 산 표면 처리한 입상 활성탄(GAC)과 활성 탄소섬유(ACF)에 의한 $Pb^{2+}$$Ni^{2+}$ 이온의 흡착 특성을 고찰하였다. 산 표면 처리용액으로는 1.0 M 질산 용액을 사용하였다. GAC와 ACF의 표면특성분석은 pH, 등전점(pHpzc), 그리고 원소분석기를 사용하였으며, 비표면적과 기공구조는 77K에서 $N_2$ 등온흡착 방법으로 측정하였다. 본 실험결과 GAC 와 ACF를 산으로 표면 처리한 경우 산소를 포함한 작용기가 증가하였다. 이처럼 산 표면 처리에 의해 증가된 표면 작용기에 따른 GAC 및 ACF의 기공이 막힘에도 불구하고, acidic-ACF > untreated-ACF > acdic-GAC > untreated-GAC 순으로 중금속 흡착능이 증가하였다.

금속 침적처리에 따른 입상활성탄의 페놀흡착 (Adsorption of phenol on metal treated by granular activated carbon)

  • 강광철;김진원;권수한;김승수;백민훈;최종원
    • 분석과학
    • /
    • 제20권3호
    • /
    • pp.193-197
    • /
    • 2007
  • 본 연구에서는 금속침적처리에 의한 입상활성탄의 페놀흡착에 관하여 고찰하였다. 금속침적 용액으로는 질산코발트와 질산아연용액을 사용하였다. 77K에서의 질소 흡탈착 특성을 통한 비표면적 및 포어 구조를 측정하였다. 페놀 흡착량 및 흡착속도는 분광광도계를 이용하여 측정하였다. 요오드흡착 용량은 금속 침적 처리되지 않은 활성탄보다 코발트 금속이 침적된 코발트침적 활성탄이 크게 흡착됨을 알 수 있다. 코발트 침적 활성탄은 중기공이 발달되었고, 이것은 메틸렌블루와 같은 고분자 물질의 흡착에 다른 흡착제보다 효과적이다. 페놀 흡착용량은 금속 침적활성탄의 금속 침적에 따른 비표면적 감소에도 불구하고 Co-GAC>Zn-GAC>R-GAC 순서로 측정되었다.

부식산 제거율 향상을 위한 오존공정의 개선에 관한 연구 (Improvement of Ozone Process for Removal Rate Elevation of Humic Acid)

  • 이유미;손일호;이동석
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.25-29
    • /
    • 2007
  • Ozone alone, Ozone/GAC, Ozone/$H_2O_2$ and Ozone/GAC/$H_2O_2$ processes were introduced for treatment of humic acid, which is a representative refractory organic compound. $H_2O_2$ and GAC used as catalysts for experiment. The treatment efficiencies of humic acid in each process were analyzed for pH variation, DOC removal, and $UV_{254}$ decrease. $UV_{254}$ decrease in Ozone/GAC and Ozone/GAC/$H_2O_2$ processes were the highest with about 93%, and Ozone alone and Ozone/$H_2O_2$ processes were 88%. DOC removal in Ozone/GAC/$H_2O_2$ process was the highest with 71%. Removal by Ozone/GAC, Ozone alone, and Ozone/$H_2O_2$ processes were 66%, 39%, and 47%, respectively.

  • PDF

고도정수처리용 Filter/Adsorber Granular Activated Carbon 특성 평가: 마모지수, floater, water-soluble ash 및 흡착특성 평가 (Evaluation on Filter/Adsorber Granular Activated Carbon using in Advanced Drinking Water Treatment: Abrasion number, Floater, Water-soluble ash, and Adsorption characteristics)

  • 박병주;도시현;김태양;홍성호
    • 상하수도학회지
    • /
    • 제30권1호
    • /
    • pp.77-85
    • /
    • 2016
  • The characteristics of filter/adsorber granular activated carbon (F/A GAC) were investigated by measuring various parameters, which include surface area, pore volume, abrasion number, floater, and water-soluble ash. The correlation between parameters was also evaluated. Moreover, rapid small-scale column test (RSSCT) was conducted for adsorption characteristics. Thirteen F/A GAC were tested, and the average values of abrasion number and water-soluble ash were 88.9 and 0.15%, respectively. F/A GAC with the larger external surface area and greater mesopore volume had the lower abrasion number, which indicated that it was worn out relatively easily. Water-soluble ash of coconut-based GAC (about 2.6%) was greater than that of coal-based GAC (less than 1%), and the pH of solution was increased with GAC, which had the higher water-soluble ash. On the other hand, floater of thirteen F/A GAC was divided as two groups, which one group had relatively higher floater (2.7~3.5%) and the other group had lower floater (approximately 0.5%). The results of RSSCT indicated that coconut-based GAC (i.e. relatively higher water-soluble ash) had less adsorption capacity. Moreover, adsorption capacity of coal-based GAC with larger surface area and greater mesopore volume was superior to others.

Cu(II)를 이용하여 표면개질된 활성탄의 인산염 제거효율 향상 (Enhancement of phosphate removal using copper impregnated activated carbon(GAC-Cu))

  • 신정우;강서연;안병렬
    • 상하수도학회지
    • /
    • 제35권6호
    • /
    • pp.455-463
    • /
    • 2021
  • The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.

입상활성탄의 표면특성과 TOC제거와의 상관성 연구 (Full-scale Case Study on the Relationship between Surface Characteristics of GAC and TOC Removal)

  • 백영애;조우현;홍병의;김광호;최영준
    • 상하수도학회지
    • /
    • 제22권3호
    • /
    • pp.323-328
    • /
    • 2008
  • During the full-scale water treatment operation at "G" Water Treatment Plant in Seoul, we investigated changes in pore volume distribution and specific surface area of GAC with time. The pore volume of the used GAC decreased to the level below 0.6 cc/g while that of the brand new GAC was ranged 0.7~0.9 cc/g. The specific surface area of GAC pores changed within the range between $1100{\sim}1200m^2/g$ and $700{\sim}800m^2/g$. Bacteria attached to the surface of GAC shows a gradual increase ($0.4{\time}10^6{\sim}8.5{\time}10^6CFU/g$) under scanninig electron microscope (SEM). TOC removal was enhanced due to growth of the attached bacteria on GAC. It was found that TOC removal was closely related with physical parameters (pore volume, specific surface area) linearly under the investigated conditions. The used GAC need to be exchanged into new one or re-generated to remove organic matters (TOC) effectively from the finished drinking water.

입상활성탄 공정의 진단 및 효율적 운영방안: D 정수장을 중심으로 (Assessment and Optimization of Granular Activated Carbon (GAC) Process in Water Treatment Process)

  • 김성수;이경혁
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.781-790
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. Many of the problems occurring in the GAC process are associated with the operation goal and performance. The purpose of this study were to evaluate the design, operation, and performance of granular activated carbon process in D water treatment plant. The optimal operation conditions of GAC process such as backwashing condition, granular activated carbon replacement time were discussed. The design, operation and performance of GAC process is influenced by their raw water characteristics and placement within the treatment process sequence. A critical analysis of plants experience and the information from the literature identifies the effectiveness of GAC process and indicates where modifications in design and operation could lead to improved performance. It would be useful to evaluate and optimize the GAC process in other treatment plant.

Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6

  • Kim, Chul Hong;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제30권2호
    • /
    • pp.220-227
    • /
    • 2014
  • The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulator of many traits relevant to the biocontrol function of this bacterium. Proteomic analysis revealed 12 proteins were down-regulated in a gacS mutant of P. chlororaphis O6. These GacS-regulated proteins functioned in combating oxidative stress, cell signaling, biosynthesis of secondary metabolism, and secretion. The extent of regulation was shown by real-time RT-PCR to vary between the genes. Mutants of P. chlororaphis O6 were generated in two GacS-regulated genes, trpE, encoding a protein involved in tryptophan synthesis, and prnA, required for conversion of tryptophan to the antimicrobial compound, pyrrolitrin. Failure of the trpE mutant to induce systemic resistance in tobacco against a foliar pathogen causing soft rot, Pectobacterium carotovorum SCCI, correlated with reduced colonization of root surfaces implying an inadequate supply of tryptophan to support growth. Although colonization was not affected by mutation in the prnA gene, induction of systemic resistance was reduced, suggesting that pyrrolnitrin was an activator of plant resistance as well as an antifungal agent. Study of mutants in the other GacS-regulated proteins will indicate further the features required for biocontrol-activity in this rhizobacterium.

고시리카제올라이트, 거대망상수지 및 입상활성탄에 의한 아민류의 액상흡착평형 (Liquid Phase Adsorption Equilibria of Amines onto High Silica Zeolite, Macroreticular Resin and Granular Activated Carbon)

  • 이성식;김형준;유명호
    • 공업화학
    • /
    • 제9권5호
    • /
    • pp.661-666
    • /
    • 1998
  • 고시리카제올라이트 (HSZ), 거대망상수지입자(MR) 및 입상활성탄(GAC)에 의한 수용액중의 12가지 아민유도체의 평형흡착 실험 데이터와 Freundlich, Langmuir, Toth, Redlich-Peterson 식의 인자들을 각각 구하였다. 아민류의 흡착특징에 있어서는 고시리카제올라이트는 unfavourable, 입상활성탄은 favourable로 비선형이나, 거대망상수지흡착제는 선형관계의 특성을 나타내며, 변수가 2개인 Freundlich 식과 3개인 Redlich-Peterson 흡착등온식에 잘 일치하였다. HSZ, MR, GAC에 의한 아민류의 흡착능은 방향족>1급아민>2급아민 순이었으며, Freundlich상수 k와 n의 곱인 (k n)값은 HSZ와 MR 및 GAC에서 아민류의 끓는 점 $T_B$, 몰부피 $V_m$, 그리고 해리상수 $pK_a$에 비례하여 증가하였다.

  • PDF

난분해성 유기물질 제거를 위한 오존/촉매 공정의 비교에 관한 연구 (A Comparative Study of Catalytic Ozone processes for Removal of Refractory Organics)

  • 이규환;이유미;이동석
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.199-205
    • /
    • 2006
  • Ozone alone and catalytic ozone processes were introduced for treatment of humic acid, which is representative refractory organic compound. The treatment efficiencies of humic acid in each process were analyzed in pH variation, DOC removal, and $UV_{254}$ decrease. Mn loaded GAC catalyst was prepared by loading potassium permanganate onto the granular activated carbon surface. BCM-GAC and BCM-Silica gel catalyst were prepared by BCM. $UV_{254}$ decrease in all processes was comparatively high with efficiency over 87%. DOC removal in ozone/GAC process was the highest with 78%, and removal rates for other processes followed the order ozone/BCM-GAC(62%) > ozone/BCM-silica gel(45%) > ozone/silica gel(43%) > ozone/Mn Loaded GAC(42%) > ozone alone(37%).

  • PDF