• Title/Summary/Keyword: Gabor 특징점

Search Result 48, Processing Time 0.02 seconds

Landmark Detection Using 3D Gobor Wavelet (3D 모델과 가버 웨이블릿을 이용한 특징점 검출)

  • Kim, Dae-Hwan;Oh, Du-Sik;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.401-402
    • /
    • 2007
  • In this paper, we propose an automatic method to finding corresponding points. One 2D image can be changed 3D shape by 3D model. The main idea is using gabor wavelet values from 3D model. And Elastic Bunch Graph Matching algorithm is more stable in 3D model.

  • PDF

Robust Reference Point and Feature Extraction Method for Fingerprint Verification using Gradient Probabilistic Model (지문 인식을 위한 Gradient의 확률 모델을 이용하는 강인한 기준점 검출 및 특징 추출 방법)

  • 박준범;고한석
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.95-105
    • /
    • 2003
  • A novel reference point detection method is proposed by exploiting tile gradient probabilistic model that captures the curvature information of fingerprint. The detection of reference point is accomplished through searching and locating the points of occurrence of the most evenly distributed gradient in a probabilistic sense. The uniformly distributed gradient texture represents either the core point itself or those of similar points that can be used to establish the rigid reference from which to map the features for recognition. Key benefits are reductions in preprocessing and consistency of locating the same points as the reference points even when processing arch type fingerprints. Moreover, the new feature extraction method is proposed by improving the existing feature extraction using filterbank method. Experimental results indicate the superiority of tile proposed scheme in terms of computational time in feature extraction and verification rate in various noisy environments. In particular, the proposed gradient probabilistic model achieved 49% improvement under ambient noise, 39.2% under brightness noise and 15.7% under a salt and pepper noise environment, respectively, in FAR for the arch type fingerprints. Moreover, a reduction of 0.07sec in reference point detection time of the GPM is shown possible compared to using the leading the poincare index method and a reduction of 0.06sec in code extraction time of the new filterbank mettled is shown possible compared to using the leading the existing filterbank method.

A Study on Iris Recognition by Iris Feature Extraction from Polar Coordinate Circular Iris Region (극 좌표계 원형 홍채영상에서의 특징 검출에 의한 홍채인식 연구)

  • Jeong, Dae-Sik;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.48-60
    • /
    • 2007
  • In previous researches for iris feature extraction, they transform a original iris image into rectangular one by stretching and interpolation, which causes the distortion of iris patterns. Consequently, it reduce iris recognition accuracy. So we are propose the method that extracts iris feature by using polar coordinates without distortion of iris patterns. Our proposed method has three strengths compared with previous researches. First, we extract iris feature directly from polar coordinate circular iris image. Though it requires a little more processing time, there is no degradation of accuracy for iris recognition and we compares the recognition performance of polar coordinate to rectangular type using by Hamming Distance, Cosine Distance and Euclidean Distance. Second, in general, the center position of pupil is different from that of iris due to camera angle, head position and gaze direction of user. So, we propose the method of iris feature detection based on polar coordinate circular iris region, which uses pupil and iris position and radius at the same time. Third, we overcome override point from iris patterns by using polar coordinates circular method. each overlapped point would be extracted from the same position of iris region. To overcome such problem, we modify Gabor filter's size and frequency on first track in order to consider low frequency iris patterns caused by overlapped points. Experimental results showed that EER is 0.29%, d' is 5,9 and EER is 0.16%, d' is 6,4 in case of using conventional rectangular image and proposed method, respectively.

Gabor Wavelet Analysis for Face Recognition in Medical Asset Protection (의료자산보호에서 얼굴인식을 위한 가보 웨이블릿 분석)

  • Jun, In-Ja;Chung, Kyung-Yong;Lee, Young-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.10-18
    • /
    • 2011
  • Medical asset protection is important in each medical institution especially because of the law on private medical record protection and face recognition for this protection is one of the most interesting and challenging problems. In recognizing human faces, the distortion of face images can be caused by the change of pose, illumination, expressions and scale. It is difficult to recognize faces due to the locations of lights and the directions of lights. In order to overcome those problems, this paper presents an analysis of coefficients of Gabor wavelets, kernel decision, feature point, size of kernel, for face recognition in CCTV surveillance. The proposed method consists of analyses. The first analysis is to select of the kernel from images, the second is an coefficient analysis for kernel sizes and the last is the measure of changes in garbo kernel sizes according to the change of image sizes. Face recognitions are processed using the coefficients of experiment results and success rate is 97.3%. Ultimately, this paper suggests empirical application to verify the adequacy and the validity with the proposed method. Accordingly, the satisfaction and the quality of services will be improved in the face recognition area.

Fingerprint Identification Using the Distribution of Ridge Directions (방향분포를 이용한 지문인식)

  • Kim Ki-Cheol;Choi Seung-Moon;Lee Jung-Moon
    • Journal of Digital Contents Society
    • /
    • v.2 no.2
    • /
    • pp.179-189
    • /
    • 2001
  • This paper aims at faster processing and retrieval in fingerprint identification systems by reducing the amount of preprocessing and the size of the feature vector. The distribution of fingerprint directions is a set of local directions of ridges and furrows in small overlapped blocks in a fingerprint image. It is extracted initially as a set of 8-direction components through the Gabor filter bank. The discontinuous distribution of directions is smoothed to a continuous one and visualized as a direction image. Then the center of the distribution is selected as a reference point. A feature vector is composed of 192 sine values of the ridge angles at 32-equiangular positions with 6 different distances from the reference point in the direction image. Experiments show that the proposed algorithm performs the same level of correct identification as a conventional algorithm does, while speeding up the overall processing significantly by reducing the length of the feature vector.

  • PDF

Face recognition in conjunction between GWT coefficients' energy and original image (GWT 계수 에너지와 원영상 결합을 이용한 얼굴 인식)

  • Han Jeong-Hoon;Hong Xiao-Fan;Kim Woo-Saeng
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.304-306
    • /
    • 2006
  • 본 논문에서는 GWT(Gabor Wavelet Transform) 계수 에너지와 원 영상간의 영상 결합을 수행한 영상을 주성분 분석법(Principal Component Analysis)에 적용하여 얼굴 인식을 하는 방법을 제안한다. GWT는 가버 함수의 크기 변화와 방향 변화에 의해 생성된다. 따라서 GWT는 다양한 크기 변화와 방향 변화를 가지는 변환으로 특정 주파수 성분과 방향성을 가지는 영상 구조가 어디에 있는지의 지역적 정보를 효과적으로 표현할 수 있는 변환으로 알려져 있다. GWT를 통해 나온 계수 에너지를 추출하고 원 영상에 더하여 지역적 특성을 크게 만든 후에 통계적 방법 중 가장 많이 사용되어지고 검증을 받은 PCA를 사용하여 인식한다. GWT 계수의 에너지는 얼굴 윤곽선, 눈과 입, 얼굴과 머리의 경계 등 색감의 급격한 변화를 나타내는 곳의 정보를 표현을 해주기 때문에 특징점 추출에 사용되고 있지만 이를 전역적으로 이용하여 인식하는 방법에 관한 연구가 이루어지지 않고 있다. 본 논문에서는 에너지 값만으로 전체 얼굴 영상의 세부적 표현을 할 수 없기 때문에 원 영상과의 l:l 비율의 영상 결항을 한 후 얼굴 인식 처리에 사용한다. 이 영상을 얼굴인식에 사용하였을 때원본 영상을 사용하였을 때보다 오인식이 줄었다.

  • PDF

Personal Identification Using One Dimension Iris Signals (일차원 홍채 신호를 이용한 개인 식별)

  • Park, Yeong-Gyu;No, Seung-In;Yun, Hun-Ju;Kim, Jae-Hui
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.70-76
    • /
    • 2002
  • In this paper, we proposed a personal identification algorithm using the iris region which has discriminant features. First, we acquired the eye image with the black and white CCD camera and extracted the iris region by using a circular edge detector which minimizes the search space for real center and radius of the iris. And then, we localized the iris region into several circles and extracted the features by filtering signals on the perimeters of circles with one dimensional Gabor filter We identified a person by comparing ,correlation values of input signals with the registered signals. We also decided threshold value minimizing average error rate for FRR(Type I)error rate and FAR(Type II)error rate. Experimental results show that proposed algorithm has average error rate less than 5.2%.

Face Recognition using Fuzzy-EBGM(Elastic Bunch Graph Matching) Method (Fuzzy Elastic Bunch Graph Matching 방법을 이용한 얼굴인식)

  • Kwon Mann-Jun;Go Hyoun-Joo;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.759-764
    • /
    • 2005
  • In this paper we describe a face recognition using EBGM(Elastic Bunch Graph Matching) method. Usally, the PCA and LDA based face recognition method with the low-dimensional subspace representation use holistic image of faces, but this study uses local features such as a set of convolution coefficients for Gabor kernels of different orientations and frequencies at fiducial points including the eyes, nose and mouth. At pre-recognition step, all images are represented with same size face graphs and they are used to recognize a face comparing with each similarity for all images. The proposed algorithm has less computation time due to simplified face graph than conventional EBGM method and the fuzzy matching method for calculating the similarity of face graphs renders more face recognition results.