• Title/Summary/Keyword: GaP

Search Result 1,901, Processing Time 0.026 seconds

Study on InGaAs/InGaAsP/InP Quantum-dot Molecules for Quantum Interference devices (양자간섭소자를 위한 InGaAs/InGaAsP/InP 양자점 분자구조 연구)

  • Kim Jin-Soak;Kim Eun-Kyu;Jeong Weon-G.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.186-193
    • /
    • 2006
  • In this study, we analyzed the electrical and optical properties of metalorganic chemical vapor deposition grown InGaAs/InGaAsP/InP quantum dot(QD) molecules by using photoluminescence and deep-level transient spectroscopy. From these resulte, the energy levels of the large QDs are located at deeper region from the conduction band edge of the barrier than that of the small QDs, The large QDs seem to have the energy states more than two, and these energy levels of the QD molecules are located at 0.35, 0.42, and 0.45 eV from conduction band edge under -4 V reverse bias conditions. The energy levels are closely coupled under low reverse bias, and then decoupled as the bias voltage is increased.

Movpe Growth of InP/GaAs and GalnAs/GaAs from EDMln, TBP and TBAs (EDMln, TBP와 TBAs를 이용한 InP/GaAs와 GalnAs/GaAs의 MOVPE 성장)

  • 유충현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.12-17
    • /
    • 1998
  • The heteroepitaxial growth of InP and GaInAs on GaAs substrates has been studied by using a new combination of source materials: ethyldimethylindium (EDMIn) and trimethylgallium (TMGa) as group III sources, and tertiarybutylarsine (TBAs) and tertiarybutylphosphine (TBP) as group V sources. Device quality InP heteroepitaxial layers were obtained by using a two-step growth process under atmospheric pressure, involving a growth of an initial nucleation layer at low temperature followed by high temperature annealing and the deposition of epitaxial layer at a growth temperature. The continuity and thickness of nucleation layer were important parameters. The InP layers deposited at 500$^{\circ}$- 55$0^{\circ}C$ are all n-type, and the electron concentration decreases with decreasing TBP/EDMIn molar ratio. The excellent optical quality was revealed by the 4.4 K photoluminescence (PL) measurement with the full width at half maximum (FWHM) of 4.94 meV. Epitaxial Ga\ulcorner\ulcorner\ulcornerIn\ulcorner\ulcorner\ulcornerAs layers have been deposited on GaAs substrates at 500$^{\circ}$ - 55$0^{\circ}C$ by using InP buffer layers. The composition of GaInAs was determined by optical absorption measurements.

  • PDF

Photoeffects at p-GaP Semiconductor Interfaces (p형 GaP 반도체 계면의 광효과)

  • Chun, Jang-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1528-1534
    • /
    • 1989
  • Photoeffects at the p-GaP semiconductor/CsNO3 electrolyte interface were investigated in terms of their current-voltage characteristics. The photoeffects at the semiconductor-electrolyte interfaces and their photocurrent variations are verified using Ar ion laser and continuous cyclic voltammetric methods. The mechanism of charge transfer at the photogeneration in the depletion layer rather than the photodecomposition of the p-GaP semiconductor electrode surface and/or the water photoelectrolysis. The adsorption of Cs+ ions at the interface is physical adsorption.

  • PDF

MOCVD Growth of AlGaAs/InGaAs/GaAs Pseudomorphic Structures and Transport Properties of 2DEG (AlGaAs/InGaAs/GaAs Pseudomorphic 구조의 MOCVD 성장 및 2차원 전자가스의 전송특성)

  • 양계모;서광석;최병두
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.424-432
    • /
    • 1993
  • AlGaAs/InGaAs/GaAs pseudomorphic structures have been grown by atmosheric pressure-MOCVD . The Al incorporation efficiency is constant but slightly exceeds the Ga incorporation during the growth of AlGaAs layers at $650^{\circ}C$ . Meanwhile , the In incorporation efficiency is constant but slightly less than the Ga incorporation in InGAAs layers. InGaAs/GaAs QWs were grown and their optical properties were characterized . $\delta$-doped Al0.24Ga0.76As/In0.16 Ga0.84As p-HEMT structures were successfully grown by MOCVD and their transport properties were characterized by Hall effect and SdH measurements. SdH Measurements at 3.7K show clear magnetoresistance oscillations and plateaus in the quantum Hall effect confirming the existence of a two-dimensional electron gas(2DEG) and a parallel conduction through the GaAs buffer layer. The fabricated $1.5\mu\textrm{m}$gatelength p-HEMTs having p-type GaAs in the buffer layer show a high transconductance of 200 mS/mm and a good pinch-off characteristics.

  • PDF

Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN (p-type GaN의 Activation을 통한 광전기화학적 특성 향상)

  • Bang, Seung Wan;Kim, Haseong;Bae, Hyojung;Ju, Jin-Woo;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.59-63
    • /
    • 2017
  • The n-type GaN semiconductor has excellent properties as a photoelectrode, but it has disadvantage that its reliability is deteriorated due to the photocorrosion because the oxygen reaction occurs on the surface. For this reason, there are fundamental attempts to avoid photocorrosion reaction of GaN surfaces by using the p-type GaN as a photoelectrode where hydrogen generation reaction occurs on the surface. However, p-type GaN has a problem of low efficiency because of its high resistivity and low hole mobility. In this study, we try to improve the photocurrent efficiency by activation process for the p-type GaN. The p-type GaN was annealed for 1 min. at $500^{\circ}C$ in $N_2$ atmosphere. Hall effect measurement system was used for the electrical properties and potentiostat (PARSTAT4000) was used to measure the photoelectrochemical (PEC) characteristics. Consequently, the photocurrent density was improved more than 1.5 times by improving the activation process for the p-type GaN. Also, its reliability was maintained for 3 hours.

Emission Stability of Semiconductor Nanowires (반도체 나노와이어에서 전자방출 안정성)

  • Yu, Se-Gi;Jeong, Tae-Won;Lee, Sang-Hyun;Heo, Jung-Na;Lee, Jeong-Hee;Lee, Cheol-Jin;Kim, Jin-Young;Lee, Hyung-Sook;Kuk, Yoon-Pil;Kim, J.M.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.499-505
    • /
    • 2006
  • Field emission of GaN and GaP nanowires, synthesized by thermal chemical vapor deposition, and their emission stabilities under oxygen and argon environments were investigated. The field emission current of GaN nanowires was seriously deteriorated under oxygen environment, while that of GaP was not. Both wires did not show any noticeable change under argon environment. The existence of oxide outer shell layers in the GaP nanowires was proposed to be a main reason for this emission stability behavior. Field emission energy distributions of electrons from these nanowires revealed that field emission mechanism of the semiconductor nanowires were different from that of carbon nanotubes.

Half-metallic Ferromagnetism for Mn-doped Chalcopyrite (Al,Ga)As Semiconductor (Chalcopyrite (Al,Ga)As 반도체와 Mn의 반금속 강자성)

  • Kang, B.S.;Song, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.49-54
    • /
    • 2020
  • We studied the electronic and magnetic properties for the Mn-doped chalcopyrite (CH) AlAs, GaAs, and AlGaAs2 semiconductor by using the first-principles calculations. The chalcopyrite AlGaP2, AlGaAsP, and AlGaAs2 compounds have a semiconductor characters with a small band-gap. The interaction between Mn-3d and As-4p states at the Fermi level dominate rather than the other states. The ferromagnetic ordering of dopant Mn with high magnetic moment is induced due to the Mn(3d)-As(4p) strong coupling, which is attributed by the partially filled As-4p bands. The holes are mediated with keeping their 3d-electrons, therefore the ferromagnetic state is stabilized by this double-exchange mechanism. We noted that the ferromagnetic state with high magnetic moment is originated from the hybridized As(4p)-Mn(3d)-As(4p) interaction mediated by the holes-carrier.

Kinetic Study on the Low-lying Excited States of Ga Atoms in Ar

  • Kuntack Lee;Ju Seon Goo;Ja Kang Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.663-669
    • /
    • 1994
  • Decay kinetics of Ga(5s), Ga(5p) and Ga(4d) atoms in Ar were studied by laser induced fluorescence technique. Theground state gallium atoms in the gas phase were generated by pulsed dc discharge of trimethyl gallium and argon mixtures. Both pulsed discharge and YAG-DYE laser system were controlled by a dual channel pulse generator and the delay time between the end of discharge and laser pulses was set 3.0-6.0 ms. The Ga(5s) and Ga(4d) atoms were generated by single photon excitation from the ground state Ga atoms and radiative lifetimes as well as the total quenching rate constants in Ar were obtained from the pressure dependence of the fluorescence decay rates. The Ga(5p) atoms were populated by a two-photon excitation method and the cascade fluorescence from Ga(5s) atoms were analyzed to extract quenching rate constant of Ga(5p) atoms by Ar in addition to radiative lifetimes of Ga(5p) state. The magnitudes of the quenching rate constants by Ar for the low-lying excited states of Ga atoms are 1.6-3$ {\times}10^{-11}cm^3$ molecul$e^{-1}s^{-1}$, which are much larger than those for alkali, alkaline earth and Group 12 metals. Based on the measured rate constants, kinetic simulations were done to assign state-to-state rate constants.

Ultraviolet LEDs using n-ZnO:Ga/i-ZnO/p-GaN:Mg heterojunction (n-ZnO/i-ZnO/p-GaN:Mg 이종접합을 이용한 UV 발광 다이오드)

  • Han, W.S.;Kim, Y.Y.;Kong, B.H.;Cho, H.K.;Lee, J.H.;Kim, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.50-50
    • /
    • 2008
  • ZnO has been extensively studied for optoelectronic applications such as blue and ultraviolet (UV) light emitters and detectors, because it has a wide band gap (3.37 eV) anda large exciton binding energy of ~60 meV over GaN (~26 meV). However, the fabrication of the light emitting devices using ZnO homojunctions is suffered from the lack of reproducibility of the p-type ZnO with high hall concentration and mobility. Thus, the ZnO-based p-n heterojunction light emitting diode (LED) using p-Si and p-GaN would be expected to exhibit stable device performance compared to the homojunction LED. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducibleavailability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices with low defect density. However, the electroluminescence (EL) of the device using n-ZnO/p-GaN heterojunctions shows the blue and greenish emissions, which are attributed to the emission from the p-GaN and deep-level defects. In this work, the n-ZnO:Ga/p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated at different growth temperatures and carrier concentrations in the n-type region. The effects of the growth temperature and carrier concentration on the electrical and emission properties were investigated. The I-V and the EL results showed that the device performance of the heterostructure LEDs, such as turn-on voltage and true ultraviolet emission, developed through the insertion of a thin intrinsic layer between n-ZnO:Ga and p-GaN:Mg. This observation was attributed to a lowering of the energy barriers for the supply of electrons and holes into intrinsic ZnO, and recombination in the intrinsic ZnO with the absence of deep level emission.

  • PDF

Fabrication of InP-Based Microstructures for III- V Compound Semiconductor Micromachining (III-V 화합물 반도체 마이크로머시닝을 위한 InP를 기반으로 한 미세구조의 제조에 관한 연구)

  • 심준환;노기영;이종현;황상구;홍창희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1151-1156
    • /
    • 2000
  • In this paper, we report a fabrication of InP-based microstructurs for III-V compound semiconductor micromachining. Vertical liquid phase epitaxy(LPE) system was used in order to grow the InP/lnGaAsP/InP layers. The thicknesses of InP top-layer and InGaAsP were $1\mum \;and \;0.4\mum$, respectively. The fabrication of InGaAsP microstructures involves front-side bulk micromachining. The experimental result showed the beams must be carefully aligned in the <100> direction since the etching of the beam in the <100> direction is more faster than that of the beam in the <110> and <110> direction.

  • PDF