Browse > Article

Study on InGaAs/InGaAsP/InP Quantum-dot Molecules for Quantum Interference devices  

Kim Jin-Soak (Department of Physics and Quantum-Function Spinics Laboratory, Hanyang University)
Kim Eun-Kyu (Department of Physics and Quantum-Function Spinics Laboratory, Hanyang University)
Jeong Weon-G. (Department of Materials Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Vacuum Society / v.15, no.2, 2006 , pp. 186-193 More about this Journal
Abstract
In this study, we analyzed the electrical and optical properties of metalorganic chemical vapor deposition grown InGaAs/InGaAsP/InP quantum dot(QD) molecules by using photoluminescence and deep-level transient spectroscopy. From these resulte, the energy levels of the large QDs are located at deeper region from the conduction band edge of the barrier than that of the small QDs, The large QDs seem to have the energy states more than two, and these energy levels of the QD molecules are located at 0.35, 0.42, and 0.45 eV from conduction band edge under -4 V reverse bias conditions. The energy levels are closely coupled under low reverse bias, and then decoupled as the bias voltage is increased.
Keywords
Quantum dot molecules; Quantum interference devices; InGaAs/InGaAsP/InP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. D. Kim, W. G. Jeong, J. H. Lee, J. S. Yim, D. Lee, R. Stevenson, P. D. Dapkus, J. W. Jang, and S. H. Pyun, Appl. Phys. Lett 87, 083110 (2005)   DOI   ScienceOn
2 R. H. Blick, R. J. Haug, K. von Klitzing, and K. Eberl, Surf. Sci. 361/362, 595 (1996)   DOI
3 G. Bacher, H. Sch,mig, M. Scheibner, A. Forchel, A. A. Maksimov, A. V. Chernenko, P. S. Dorozhkin, V. D. Kulakovskii, T. Kennedy, and T. L. Reinecke, Physica E 26, 37 (2005)   DOI
4 G. Ortner, M. Bayer, A. Kress, A. Forchel, Y. B. Lyanda-Geller, and T. L. Reinecke, Physica E 21, 171 (2004)   DOI
5 M. Hayne, R. Provoost, M. K. Zundel, Y. Manz, K. Eberl, and V. V. Moshchalkov, Physica E 6, 436 (2000)   DOI   ScienceOn
6 M. K. Zundel, N. Y. Jin-Phillipp, F. Phillipp, K. Eberl, T. Riedl, E. Fehrenbacher, and A. Hangleiter, Appl. Phys. Lett. 73, 1784 (1998)   DOI   ScienceOn
7 P.-F. Braun, X. Marie, L. Lombez, B. Urbaszek, T. Amand, P. Renucci, V. K. Kalevich, K. V. Kavokin, O. Krebs, P. Voisin, and Y. Masumoto, Phys. Rev. Lett. 94, 16601 (2005)   DOI   ScienceOn
8 J. W. Jang, S. H. Pyun, S. H. Lee, I. C. Lee, W. G. Jeong, R. Stevenson, P. D. Dapkus, N. J. Kim, M. S. Hwang, and D. Lee, Appl. Phys. Lett. 85, 3675 (2004)   DOI   ScienceOn
9 Y. Zheng, T. L,, C. Zhang, and W. Su, Physica E 24, 290 (2004)   DOI
10 K. E. Meissner, C. Holton, and W. Spillman, Physica E 26, 377 (2005)   DOI   ScienceOn
11 D. V. Lang, J. Appl. Phys. 45, 3023 (1974)   DOI   ScienceOn
12 S. M. Sze, Semiconductor Devices - Physics and Technology, 2nd ed (John Wiley & Sons, New York, 2002), p. 101
13 P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic Press, New York, 1992), p. 336
14 E. K. Kim, J. S. Kim, H. Hwang, K. Park, E. Yoon, J. H. Kim, I.-W. Park, and Y. J. Park, Jpn. J. Appl. Phys 43, 3825 (2004)   DOI
15 L. Jacak, P. Hawrylak, and A. W,js, Quantum Dots (Springer-Verlag, New York, 1997) p. 1
16 R. Dingle, W. Wiemann, and C. H. Henry, Phys. Rev. Lett. 34, 1327 (1975)   DOI
17 L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974)   DOI   ScienceOn