• Title/Summary/Keyword: GaN thin film

Search Result 211, Processing Time 0.03 seconds

The preparation of the doped GaN thin films by HVPE (HVPE에 의한 불순물이 첨가된 GaN 박막의 제작)

  • 정성훈;송복식;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.66-69
    • /
    • 1997
  • The p-GaN fins doped with the impurity of Zn were grown on n-GaN films to prevent the defects from the lattice mismatch with sapphire substrates by HVPE. For growth of the high quality n-GaN, the optimized conditions were at first deduced from the results of various HCI gas flow rates and growth temperatures. On the basis of these conditions, p-GaN films were grown and investigated of the characteristics. The FWHM of the double crystal rocking curve of n-GaN was decreased and the hexagonal phases on the surface of GaN films were tend to be vivid with the inoement of HCI gas flow rates. Finally the n-type GaN films with FWHM of 648arcsec were obtained at 10cc/min of HCI gas. As the GaN films were grown with the above conditions, Zn was introduced in the form of vapor as a dopant for p-GaN films. But when Zn vaporized at 77$0^{\circ}C$ was doped to the films, the crystallites of Zn were distributed uniformly on the surface of the GaN film due to the over-doped.

  • PDF

Study on Point Defect for $AgGaS_2$ Single Crystal Thin film Obtained by Photoluminescience Measurement Method (광발광 측정법에 의한 $AgGaS_2$ 단결정 박막의 점결함 연구)

  • Hong, Kwang-Joon;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.117-126
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for $AgGaS_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaS_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $590^{\circ}C\;and\;440^{\circ}C$, respectively The temperature dependence of the energy band gap of the $AgGaS_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7284 eV-(8.695{\times}10^{-4}eV/K)T^2/T(T+332K)$. After the as-grown $AgGaS_2$, single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of $AgGaS_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag},\;V_s,\;Ag_{int},\;and\;S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaS_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $AgGaS_2$ crystal thin films did not form the native defects because Ga in $AgGaS_2$ single crystal thin films existed in the form of stable bonds.

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

Efficiency Analysis with Deposition Time of OVC layer in Cu(InGa)$Se_2$ Films (Cu(InGa)$Se_2$ 박막 제조시 OVC층의 증발시간에 따른 광변환효율 분석)

  • Kim, S.K.;Lee, J.L.;Kang, K.H.;Yoon, K.H.;Park, I.J.;Song, S.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1587-1589
    • /
    • 2002
  • Photovoltaics is considered as one of the most promising new energy technology, because its energy source is omni present, pollution-free and inexhaustive. It is agreed that these solar cells must be thin film type because thin film process is cost-efficive in the fact that it uses much less raw materials and can be continuous. The defect chalcopyrite material $CuIn_3Se_5$ has been identified as playing an essential role in efficient photovoltaic action in $CuInSe_2$-based devicesm It has been reported to be of n-type conductivity, forming a p-n junction with its p-type counterpart CuInSe2. Because the most efficient cells consist of the $Cu(In,Ga)Se_2$ quarternary, knowledge of some physical properties of the Ga-containing defect chalcopyrite $Cu(In,Ga)_3Se_5$ may help us better understand the junction phenomena in such devices.

  • PDF

Properties of GaN Film Grown on AlN/PSS Template by Hydride Vapor Phase Epitaxy (AlN/PSS Template 위에 HVPE로 성장한 GaN 막의 특성)

  • Son, Hoki;Lee, YoungJin;Lee, Mijai;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Hae-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.348-352
    • /
    • 2016
  • In this paper, GaN film was grown on AlN/PSS by hydride vapor phase epitaxy compared with GaN on planar sapphire. Thin AlN layer for buffer layer was deposited on patterned sapphire substrate (PSS) by metal organic chemical vapor deposition. Surface roughness of GaN/AlN on PSS was remarkably decreased from 28.31 to 5.53 nm. Transmittance of GaN/AlN grown on PSS was lower than that of planar sapphire at entire range. XRD spectra of GaN/AlN grown on PSS corresponded the wurzite structure and c-axis oriented. The full width at half maximum (FWHM) values of ${\omega}$-scan X-ray rocking curve (XRC) for GaN/AlN grown on PSS were 196 and 208 arcsec for symmetric (0 0 2) and asymmetric (1 0 2), respectively. FWHM of GaN on AlN/PSS was improved more than 50% because of lateral overgrowth and AlN buffer effect.

A study on point defect for thermal annealed CuGaSe2 single crystal thin film (열처리된 CuGaSe2 단결정 박막의 점결함연구)

  • 이상열;홍광준
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.154-154
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for CuGaSe2 single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe2, it was found tetragonal structure whose lattice constant at and co were 5.615 ${\AA}$ and 11.025 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaSe2 mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (MWE) system. The source and substrate temperatures were Slot and 450$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (UXD). The carrier density and mobility of CuGaSe2 single crystal thin films measured with Hall effect by van der Pauw method are 5.0l${\times}$10$\^$17/ cm$\^$-3/ and 245 $\textrm{cm}^2$/V$.$s at 293K, respectively. The temperature dependence of the energy band gap of the CuGaSe2 obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 1.7998 eV - (8.7489${\times}$10$\^$-4/ eV/K)T$^2$/(T + 335 K. After the as-grown CuGaSe2 single crystal thin films was annealed in Cu-, Se-, and Ca-atmospheres, the origin of point defects of CuGaSe2 single crystal thin films has been investigated by the photoluminescence(PL) at 10 K The native defects of V$\_$CU/, V$\_$Se/, Cu$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted CuGaSe2 single crystal thin films to an optical n-type. Also, we confirmed that Ga in CuGaSe2/GaAs did not form the native defects because Ga in CuGaSe2 single crystal thin films existed in the form of stable bonds.

  • PDF

Study point defect and growth for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE) 법에 의한 $CuInSe_2$ 단결정 박막 성장과 점결함 연구)

  • Yu, Sang-Ha;Hong, Gwang-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.152-153
    • /
    • 2007
  • $CuInSe_2$ single crystal thin film was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. After the as-grown $CuInSe_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres, the origin of point defects of $CuInSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Cu}$, $V_{Se}$, $Cu_{lnt}$, and $Se_{lnt}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInSe_2$/GaAs did not form the native defects because In in $CuInSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

GaN epitaxial growths on chemically and mechanically polished sapphire wafers grown by Bridgeman method (수평 Bridgeman법으로 성장된 사파이어기판 가공 및 GaN 박막성장)

  • 김근주;고재천
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.5
    • /
    • pp.350-355
    • /
    • 2000
  • The fabrication of sapphire wafer in C plane has been developed by horizontal Bridgeman method and GaN based semiconductor epitaxial growth has been carried out in metal organic chemical vapour deposition. The single crystalline ingot of sapphire has been utilized for 2 inch sapphire wafers and wafer slicing and lapping machines were designed. These several steps of lapping processes provided the mirror-like surface of sapphire wafer. The measurements of the surface flatness and the roughness were carried out by the atomic force microscope. The GaN thin film growth on the developed wafer was confirmed the wafer quality and applicability to blue light emitting devices.

  • PDF

The Effect of Thermal Annealing and Growth of $CuGaSe_2$ Single Crystal Thin Film for Solar Cell Application (태양전지용 $CuGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Hong, Kwang-Joon;You, Sang-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.59-70
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615{\AA}$ and $11.025{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $5.01\times10^{17}cm^{-3}$ and $245cm^2/V{\cdot}s$ at 293K. respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.7998 eV-($8.7489\times10^{-4}$ eV/K)$T^2$/(T+335K). After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU},\;V_{Se},\;Cu_{int}$ and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2$/GaAs did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

InGaN/GaN multiple quantum well light-emitting diodes with highly transparent Pt thin film contact on p-GaN

  • Heo, Chul;Kim, Hyun-Soo;Kim, Sang-Woo;Lee, Ji-Myun;Kim, Dong-Jun;Kim, Hyun-Min;Park, Sung-Joo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.116-116
    • /
    • 2000
  • 질화물 반도체는 LED, LD, Transistor, 그리고 Photodetector 등 광소자 및 전자소자를 실현할 수 있는 소재로써 최근에 각광 받고 있으며, 또한 국·내외적으로 연구가 활발히 진행되고 잇다. 질화물 발광 다이오드 제작에는 소자의 효율과 수명시간의 향상을 위하여 질화물 반도체와 금속과의 접합시 고 품질의 오믹 접합이 필수적이다. 특히 p-형 GaN의 경우에는 높은 정공 농도를 갖는 p-형 GaN를 얻기가 어렵고 GaN의 일함수에 비하여 높은 일함수를 갖는 금속이 없기 때문에 매우 낮은 접합 저항을 가지며 안정성이 매우 우수한 금 접합을 얻기가 어렵다고 알려져 있다. 또한, GaN 계열의 발광 다이오드는 일반적으로 표면 발광 다이오드 형태로 제작되기 때문에 p-형 GaN 층의 오믹 접촉으로 사용되는 금속의 전기적 특성뿐만 아니라 발광 다이오드의 활성층에서 발광되어 나오는 빛에 대한 투과도 또한 우수하여야 발광 다이오드의 효율이 우수해진다. 본 연구에서는 p-형 GaN층의 접합 금속으로 Pt(80nm)과 Ni(5nm)/Au(7nm)를 사용하여 InGaN/GaN 다중양자우물 구조의 발광 다이오드를 제작하여 전기적 특성 및 발광효율을 측정하였다. 그리고, Pt(80nm)과 p-형 GaN와의 접합시 온도 변화에 따른 전기적 특성을 TLM 방법으로 조사하고, 가시광선 영역에서의 빛에 대한 투과도를 UV/VIS spectrometer, X-ray reflectivity, 그리고 Atomic Force Microscopy 등을 이용하여 분석하였다.

  • PDF