• Title/Summary/Keyword: GaN powders

Search Result 25, Processing Time 0.025 seconds

Synthesis and Characterization of Gallium Nitride Powders and Nanowires Using Ga(S2CNR2)3(R = CH3, C2H5) Complexes as New Precursors

  • Jung, Woo-Sik;Ra, Choon-Sup;Min, Bong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Gallium nitride (GaN) powders and nanowires were prepared by using tris(N,N-dimethyldithiocarbamato)gallium(III) (Ga(DmDTC)$_3$) and tris(N,N-diethyldithiocarbamato)gallium(III) (Ga(DeDTC)$_3$) as new precursors. The GaN powders were obtained by reaction of the complexes with ammonia in the temperature ranging from 500 to 1100 ${^{\circ}C}$. The process of conversion of the complexes to GaN was monitored by their weight loss, XRD, and $^{71}$Ga magic-angle spinning (MAS) NMR spectroscopy. Most likely the complexes decompose to $\gamma$ -Ga$_2$S$_3$ and then turn into GaN via amorphous gallium thionitrides (GaS$_x$N$_y$). The reactivity of Ga(DmDTC)$_3$ with ammonia was a little higher than that of Ga(DeDTC)$_3$. Room-temperature photoluminescence spectra of asprepared GaN powders exhibited the band-edge emission of GaN at 363 nm. GaN nanowires were obtained by nitridation of as-ground $\gamma$ -Ga$_2$S$_3$ powders to GaN powders, followed by sublimation without using templates or catalysts.

Structural and Optical Properties of GaN Powders Synthesized from GaOOH (GaOOH로부터 합성된 GaN 분말의 구조적, 광학적 특성)

  • Jo, Seong-Ryong;Lee, Jong-Won;Park, In-Yong;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.476-481
    • /
    • 2002
  • In this work, we report on the synthesis of the GaN powders from gallium oxide hydroxide (GaOOH) powders and on the structural and optical properties of them. Simple heat treatment of GaOOH in the flow of $NH_3$ gas leads to the formation of submicron hexagonal GaN powders even at the low reaction temperature of $800^{\circ}C$. XRD measurements show that the powders obtained are the single phase GaN. EDS, FTIR, and PL measurements indicate the oxygen-associated characteristics. It is shown from the low temperature PL measurement on GaN powders synthesized at $1000^{\circ}C$ that the shallow donor-acceptor recombination induced emission is more intense than the near band-edge excitonic emission.

Synthesis and Characterization of Gallium Nitride Powders from a Gallium(III) Sulfate Salt in Flowing Ammonia

  • Jung, Woo-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1058-1061
    • /
    • 2003
  • Gallium Nitride (GaN) powders were synthesized by calcining a gallium(III) sulfate salt in flowing ammonia in the temperature range 500-1100$^{\circ}C$. The process of conversion of the salt to GaN was monitored by X-Ray Diffraction (XRD). The salt decomposed to ${\gamma}$-Ga$_2$O$_3$ and then converted to GaN without ${\gamma}$-${\beta}$Ga$_2$O$_3$ phase transition. Variations in XRD patterns and weight loss of samples with temperature indicate that the conversion of ${\gamma}$-Ga$_2$O$_3$ to GaN does not proceed through Ga$_2$O but stepwise via amorphous gallium oxynitride (GaO$\_$x/N$\_$y/) as intermediates. Room-temperature photoluminescence spectra of GaN powders obtained showed the emission peak at 363 nm and no yellow band.

Preparation of Gallium Nitride Powders and Nanowires from a Gallium(III) Nitrate Salt in Flowing Ammonia

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.51-54
    • /
    • 2004
  • Gallium nitride (GaN) powders were prepared by calcining a gallium(III) nitrate salt in flowing ammonia in the temperature ranging from 500 to 1050 $^{\circ}C$. The process of conversion of the salt to GaN was monitored by X-ray diffraction and $^{71}Ga$ MAS (magic-angle spinning) NMR spectroscopy. The salt decomposed to ${\gamma}-Ga_2O_3$ and then converted to GaN without ${\gamma}-{\beta}Ga_2O_3$ phase transition. It is most likely that the conversion of ${\gamma}-Ga_2O_3$ to GaN does not proceed through $Ga_2O$ but stepwise via amorphous gallium oxynitride ($GaO_xN_y$) as intermediates. The GaN nanowires and microcrystals were obtained by calcining the pellet containing a mixture of ${\gamma}-Ga_2O_3$ and carbon in flowing ammonia at 900 $^{\circ}C$ for 15 h. The growth of the nanowire might be explained by the vapor-solid (VS) mechanism in a confined reactor. Room-temperature photoluminescence spectra of as-synthesized GaN powders obtained showed the emission peak at 363 nm.

Synthesis of GaN by Direct Reaction Method and Vapor Phase Epitaxy (직접반응법에 의한 GaN의 한성과 기상에피텍시)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.71-73
    • /
    • 1995
  • In this work, we synthsized GaN powders by the direct reactions of Ga with NH$_3$at the temperature range of 950∼1150$^{\circ}C$ and we growth the GaN thin films on Si and sapphire substrates using the synthesized GaN powders by the vapor phase epitaxy method. The synthesized powder had hexagonal crystal structures with lattice constants of a$\sub$0/=3.1895${\AA}$, c$\sub$0/=5.18394${\AA}$. The reaction rates of GaN were increased with both reaction time and temperature, however it did not depends on the flow rates of NH$_3$. The island type GaN crystals were grown on (0001) sapphire substrates and fast lateral growth of GaN on (111) Si substrate than sapphire was observed in our experiments.

  • PDF

Synthesis of $\beta$-$Ga_2$$O_3 Nanobelts and Nanoparticles from Mechanically Ground GaN Powders with Different Thermal Annealing Atmospheres (기계적으로 연마한 GaN 분말로부터 열처리 분위기를 달리한 $\beta$-$Ga_2$$O_3 나노벨트 및 나노입자의 합성)

  • Kim, Byung-Cheul;Sun, Kyu-Tae;Park, Kwang-Soo;Im, Ki-Joo;Noh, Tae-Yong;Nahm, Sahn;Sung, Man-Young;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.965-971
    • /
    • 2001
  • $\beta$-Ga$_2$O$_3$ nanobelts and nanoparticles were synthesized from mechanically ground GaN powders with thermal annealing in a nitrogen atmosphere and an oxygen atmosphere, respectively. The study of field emission scanning electron microscopy (FESEM) on the microstructures of nanomaterials revealed that the nanobelts synthesized in the nitrogen atmosphere are with the range of 20~1000nm width and 10 ~100nm thickness, and that nanomaterials are nanoparticles with 20~50nm radius obtained by thermal annealing in an oxygen atmosphere. The crystal structure of the $\beta$-Ga$_2$O$_3$ nanobelts and nanoparticles was in this study investigated by X-ray diffractometer (XRD) and high-resolution transmission electron microscope (HRTEM). The formation processes of the nanobelts and nanoparticles will be discussed in this paper.

  • PDF

Effect of B2O3 Additives on GaN Powder Synthesis from GaOOH (GaOOH로부터 GaN 분말의 합성에 미치는 B2O3의 첨가효과)

  • Song, Changho;Shin, Dongwhee;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.104-111
    • /
    • 2013
  • In this study, GaN powders were synthesized from gallium oxide-hydroxide (GaOOH) through an ammonification process in an $NH_3$ flow with the variation of $B_2O_3$ additives within a temperature range of $300-1050^{\circ}C$. The additive effect of $B_2O_3$ on the hexagonal phase GaN powder synthesis route was examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transformation infrared transmission (FTIR) spectroscopy. With increasing the mol% of $B_2O_3$ additive in the GaOOH precursor powder, the transition temperature and the activation energy for GaN powder formation increased while the GaN synthesis limit-time ($t_c$) shortened. The XPS results showed that Boron compounds of $B_2O_3$ and BN coexisted in the synthesized GaN powders. From the FTIR spectra, we were able to confirm that the GaN powder consisted of an amorphous or cubic phase $B_2O_3$ due to bond formation between B and O and the amorphous phase BN due to B-N bonds. The GaN powder synthesized from GaOOH and $B_2O_3$ mixed powder by an ammonification route through ${\beta}-Ga_2O_3$ intermediate state. During the ammonification process, boron compounds of $B_2O_3$ and BN coated ${\beta}-Ga_2O_3$ and GaN particles limited further nitridation processes.

${\beta}-Ga_2O_3$ Nanomaterials Synthesized from Mechanically Ground GaN Powders by a Thermal Annealing (기계적으로 연마한 GaN 분말로부터 열처리로 합성된 ${\beta}-Ga_2O_3$ 나노물질)

  • Park, Kwang-Soo;Sun, Kyu-Tae;In, Ki-Joo;Sung, Man-Young;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.158-160
    • /
    • 2001
  • ${\beta}-Ga_2O_3$ nanobelts and nanoparticles were synthesized by a thermal annealing of as-milled GaN powders at $930^{\circ}C$ in nitrogen and oxygen atmosphere. respectively. The width of the nanobelts are $20\;nm{\sim}1000\;nm$. the thickness of the nanobelts are 100 nm. A bundle of the nanobelts is several centimeters in length. The lattice structure of these nanobelts and nanoparticles was identified to be a monoclinic ${\beta}-Ga_2O_3$ by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED).

  • PDF

On the Synthesis of Zn-doped GaN Fine-Powders (Zn가 첨가된 GaN 미세 분말의 합성에 관하여)

  • 이재범;이종원;박인용;김선태
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.95-95
    • /
    • 2003
  • 최근, 대면적 평판표시소자 제작을 위한 전기발광 (EL; electroluminescence)소자용 소재로서 GaN 분말을 적용하고자 하는 연구가 진행되고 있다. 이와 같이 GaN 분말을 EL 소재로 사용하기 위해서는 원하는 파장의 빛을 발광할 수 있도록 특정의 불순물을 첨가하여야 할 필요가 있다. Mg이 첨가된 GaN 분말의 합성과 특성에 대한 연구가 있었으며, 희토류 원소가 첨가된 GaN 분말의 특성이 보고된바 있다. 본 논문에서는 GaOOH 분말을 출발물질로 채택하여 Zn가 첨가된 GaN 분말을 합성하고 광학적인 특성을 조사하였다. Zn가 첨가된 GaN 분말을 합성하기 위하여, 우선 CaOOH 분말 1g과 일정량의 ZnO 또는 Zn(NO$_3$)$_3$를 함께 섞어 유발에서 습식 혼합한 후 건조시켰다. Ga에 대한 Zn의 몰 비는 0.1부터 30 까지 변화시켰다. 반응온도는 900~110$0^{\circ}C$의 범위에서 변화시켰고, 반응시간은 1~4시간 범위에서 변화시켰으며, NH$_3$의 유량은 400 sccm으로 하였다. X선 회절분석장치를 사용하여 결정구조를 확인하였고, Zn의 첨가에 따른 광학적 특성은 10 K의 온도에서 광루미네센스(PL; photoluminescence)를 측정하여 평가하였다.

  • PDF

On the Growth of GaN Single Crystal from GaOOH Powders (GaOOH 분말로부터 GaN 단결정 성장에 관하여)

  • 이재범;이종원;박인용;김선태
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.96-96
    • /
    • 2003
  • 벌크 형태의 CaN 단결정 성장은 매우 곤란한 관계로 아직까지 관련 기술의 개발이 미흡한 실정이다 오랜 기간동안 승화 (sublimation)법으로 대구경 벌크 GaN 단결정을 성장시키고자 하는 노력이 지속되었지만 최근까지도 만족할 만한 결과가 보고되지 않고 있다. 본 논문에서는 종래의 방법과는 달리 출발물질로서 GaOOH 분말을 채택하고, 이를 NH$_3$ 분위기에서 가열 반응시켜 GaN 결정을 성장시켰다. 반응온도와 반응시간 및 NH$_3$ 유량 등의 성장조건에 따른 GaN 결정의 성장거동과 광학적 특성을 조사하였다. 원료인 GaOOH 분말 1g을 석영 용기에 담아 직경이 35mm인 석영 보호관에 위치시키고, 1000~l17$0^{\circ}C$의 온도에서 NH$_3$ 가스를 100~1000 sccm으로 공급하면서 96시간 동안 반응시켰다. 실험이 종료되면 전기로의 온도를 상온까지 냉각시킨 후 석영 보호관 내벽에 성장된 Ga 결정을 채집하였다. 이와 같이 채집된 결정의 형태와 크기를 광학현미경을 사용하여 조사하였고, 결정표면의 상태를 전자현미경을 사용하여 관찰하였다. 시료의 결정성을 알아보기 위하여 X선 회절 분석을 하였고, 저온에서의 광루미네센스 (PL; photoluminescence) 특성을 조사하였다.

  • PDF