• Title/Summary/Keyword: Ga doped ZnO

Search Result 200, Processing Time 0.028 seconds

Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior (수직 배향된 Ga-doped ZnO nanorods의 합성과 전기적 특성)

  • Ahn, C.H.;Han, W.S.;Kong, B.H.;Kim, Y.Y.;Cho, H.K.;Kim, J.J.;Kim, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.414-414
    • /
    • 2008
  • Vertically well-aligned Ga-doped ZnO nanorods with different Ga contents were grown by thermal evaporation on a ZnO template. The Ga-doped ZnO nanorods synthesized with 50 wt % Ga with respect to the Zn content showed maximum compressive stress relative to the ZnO template, which led to a rapid growth rate along the c-axis due to the rapid release of stored strain energy. A further increase in the Ga content improved the conductivity of the nanorods due to the substitutional incorporation of Ga atoms in the Zn sites based on a decrease in lattice spacing. The p-n diode structure with Ga-doped ZnO nanorods, as a n-type, displayed a distinct white light luminescence from the side-view of the device, showing weak ultraviolet and various deep-level emissions.

  • PDF

Luminescence Properties of $Dy^{3+}-(or Tm^{3+}-)$ Doped $Ga_2O_3$ and $ZnGa_2O_4$ Phosphors

  • Ryu, Ho-Jin;Park, Hee-Dong
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.134-138
    • /
    • 1997
  • $Dy^{3+}-(or Tm^{3+}-)$ doped $Ga_2O_3 \;and\; ZnGa_2O_4$ phosphors were prepared using the solid state reaction method to investigate their photoluminescent characteristics. Under 254 nm excitation, $Dy^{3+}-doped Ga2_O_3$ exhibited two emission bands of 460~505nm and 570~600nm. On the other hand, $Dy^{3+}-(or Tm^{3+}-)$ doped $ZnGa_2O_4 $phosphors exhibited a broad-band emission extending from 330 nm to 610 nm, peaking at about 430 nm(or 370 nm). In this study, an emission peak shift of nealy 50 nm towards longer wavelength region was observed with $Dy^{3+}$ doping in the $ZnGa_2O_4 $.

  • PDF

A Study on Properties of Ga-doped ZnO Thin Films for Annealing Temperature Change by RF Sputtering Method (RF Sputtering으로 증착한 어닐링 온도 변화에 따른 Ga-doped ZnO 박막 특성 연구)

  • Han, Seung Ik;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.11-15
    • /
    • 2016
  • This paper, Ga-doped ZnO (GZO) thin films which were deposited on Corning glass substrate using an magnetron sputtering deposition technology and then the post deposition annealing process was conducted for 30 minutes at different temperature of 100, 200, 300, and $400^{\circ}C$, respectively. So as to investigate the properties for the relevant the Concentration and Oxygen Vacancy with Annealing temperature of Ga-doped ZnO thin films by RF Sputtering method. The Carrier concentration is enhanced as annealing temperature decreases, and also the oxygen vacancy concentration is enhanced as annealing temperature decreased. Oxygen vacancy will decrease along with Carrier concentration. This change in Carrier concentration is related to changes in oxygen vacancy concentration. The figure of merit obtained in this study means that Ga-doped ZnO films which annealed at $400^{\circ}C$ have the lowest Carrier concentration and Oxygen vacancy, which have the highest optoelectrical performance that it could be used as a transparent electrode.

Enhanced Efficiency of Transmit and Receive Module with Ga Doped MgZnO Semiconductor Device by Growth Thickness

  • Shim, Bo-Hyun;Jo, Hee-Jin;Kim, Dong-Jin;Chae, Jong-Mok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.39-43
    • /
    • 2016
  • The structural, electrical properties of Ga doped MgZnO transparent conductive oxide (TCO) films by ratio-frequency(RF) magnetron sputtering were investigated. Ga doped MgZnO TCO films were deposited on the sapphire substrates at $200^{\circ}C$ varying growth thickness 200 to 600 nm. The optical properties of Ga doped MgZnO TCO films were showed above 85% transmittance from 300 to 1000 nm region. In addition, the current density ($J_{SC}$) of $Cu(In,Ga)Se_2$ (CIGS) solar cells was improved by using the MgZnO:Ga films of 500 nm thickness because of outstanding electrical properties. The $Cu(In,Ga)Se_2$ solar cells with MgZnO:Ga transparent conducing layer yielded an efficiency of 9.8% with current density ($31.8mA/cm^2$), open circuit voltage (540.2 V) and fill factor (62.2) under AM 1.5 illumination.

Cathode Luminescence Characteristics of $ZnGa_2O_4$ Phosphors with the doped activator (활성제 첨가에 따른 $ZnGa_2O_4$ 형광체의 발광특성)

  • Hong, Beom-Joo;Lee, Seung-Kyu;Kim, Kyung-Hwan;Park, Yong-Seo;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.301-302
    • /
    • 2005
  • The $ZnGa_2O_4$:Cr phosphor was synthesized through solid-state reactions at the various molar ratio of Cr from 0.002 % to 0.01 %. The XRD patterns show that the Cr-doped $ZnGa_2O_4$ has a (311) main peak and a spinel phase. Also the emission wavelength shills from 510 to 705 nm in comparison with $ZnGa_2O_4$:Mn when Cr is doped in $ZnGa_2O_4$. These results indicate that $ZnGa_2O_4$ phosphors hold promise for potential applications in field-emission display devices with high brightness operating in full color regions.

  • PDF

Preparation and Luminescent Properties of Zn2SiO4:Mn, Ga Phosphors (Zn2SiO\4:Mn, Ga 형광체의 제조와 발광특성)

  • Lee, Ji-Young;Yu, Yun-Sik;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.158-162
    • /
    • 2009
  • $Zn_2SiO_4$:Mn green phosphors doped with Ga for PDP were synthesized by solid state reaction method. Photoluminescence measurements showed a new emission peak at around 600 nm for $Zn_2SiO_4$:Mn phosphors doped with Ga. Also, the luminescent color with doping $Ga^{3+}$ in the $Zn_2SiO_4$:Mn phosphors changed to green from yellowish green. Consequently, the new peak and charge of the luminescent color in the $Zn_2SiO_4$:Mn, Ga phosphors were attributed to $^2E{\rightarrow}^6A_2$ transition of $Mn^{4+}$.

RFID Antenna Based on Ga-doped ZnO Transparent Conducting Oxide (Ga-doped ZnO 투명전도막의 RFID 안테나 응용)

  • Han, Jae-Sung;Lee, Seok-Jin;Jung, Tae-Hwan;Kim, Jeong-Yeon;Park, Jae-Hwan;Lim, Dong-Gun;Lim, Seong-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.78-79
    • /
    • 2009
  • 본 연구에서는 ZnO계 투명전극 소재를 이용하여 RFID 태그 안테나에 적용 가능성 여부를 확인하였다. Si 기판위에 RF 스퍼터링 공정에 의해 Ga-doped ZnO 투명 마이크로스트립 스파이혈 안테나를 $2{\mu}m$를 증착하여 구현하고 그 전기적 특성을 측정하였다. HFSS 전자계 시뮬레이터를 사용하여 13.56MHz HF 주파수 대역에서 태그 안테나로서의 가능성을 검증한 후 Ga-doped ZnO 타겟을 사용한 RF 스퍼터링 공정에 의하여 스파이럴 안테나 패턴을 구현하였다. 마이크로스트립 선폭 및 선 간격을 $50\sim200{\mu}m$때 영역에서 조절하면서 안테나 패턴을 설계하였다. S 파라메터, 자기공진주파수 및 Q값을 시뮬레이션으로부터 도출하였다. Al $2{\mu}m$ 증착한 시편에 비하여 약 -10dB 정도의 이득저하가 발생하였으나 리더-태그를 밀착시킨 조건에서 1.7V (13.56MHz) 전압검출이 가능하였다.

  • PDF

증착 온도 변화에 따라 성장시킨 Ga-doped ZnO 박막의 특성평가

  • Lee, Min-Jeong;Kim, Seong-Yeon;Im, Jin-Hyeong;Bang, Jeong-Sik;Myeong, Jae-Min
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.173-174
    • /
    • 2009
  • 증착 온도를 변화시켜 성장시킨 Ga-doped ZnO 박막을 수소 열처리를 통해 구조적 전기적 광학적 성질을 기존의 투명 전극으로 사용되는 ITO (indium tin oxide) 물질을 대체할 수 있는 가능성을 확인하였다. 열처리 전 Ga-doped ZnO 박막의 증착온도가 증가함에 따라 전기적 성질이 향상되었지만 423 K 이상의 온도에서는 과잉 dopant인 Ga 으로 인한 기여도가 커져 $ZnGa_{2}O_{4}$$Ga_{2}O_{3}$ 상으로 인해 박막의 질이 저하되는 것을 확인할 수 있었다. 수소 열처리 후 과잉 dopant Ga 으로 인하여 상온에서 올린 박막만 전기적 성질이 향상되었지만 나머지 증착 온도 변화를 둔 박막에서는 큰 변화가 없었다.

  • PDF

Structural and Electrical Properties of Ga-doped ZnO-SnO2 Films (Ga이 첨가된 ZnO-SnO2막의 구조적 및 전기적 특성)

  • Park, Ki-Cheol;Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.641-646
    • /
    • 2011
  • Ga-doped ZnO-$SnO_2$ (ZSGO) films were deposited by rf magnetron sputtering and their structural and electrical properties were investigated. In order to fabricate the target for sputtering, the mixture of ZnO, $SnO_2$ (1:1 weight ratio) and $Ga_2O_3$ (3.0 wt%) powder was calcined at $800^{\circ}C$ for 1 h. The substrate temperature was varied from room temperature to $300^{\circ}C$. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The optical transmittances of the films were measured and the optical energy band gaps were obtained from the absorption coefficients. The resistivity variation with substrate temperature was measured. Auger electron spectroscopy was employed to find the atomic ratio of Zn, Sn, Ga and O in the film deposited at room temperature. ZSGO films exhibited the optical transmittance in the visible region of more than 80% and resistivity higher than $10\;{\Omega}cm$.

The Structural Investigation for the Enhancement of Electrical Conductivity in Ga-doped ZnO Targets

  • Yun, Sang-Won;Seo, Jong-Hyeon;Seong, Tae-Yeon;An, Jae-Pyeong;Gwon, -Hun;Lee, Geon-Bae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.2-243.2
    • /
    • 2011
  • ZnO materials with a wide band gap of approximately 3.3 eV has been used in transparent conducting oxides (TCO) due to exhibitinga high optical transmission, but its low conductivity acts as role of a limitation for conducting applications. Recently, Ga or Al-doped ZnO (GZO, AZO) becomes transparent conducting materials because of high optical transmission and excellent conductivity. However, the fundamental mechanism underlying the improvement of electrical conductivity of the GZO is still the subject of debate. In this study, we have fully investigated the reasons of high conductivity through the characterization of plane defects, crystal orientation, doping contents, crystal structure in Zn1-xGaxO (x=0, 3, 5.1, 5.6, 6.6 wt%). We manufactured Zn1-xGaxO by sintering ZnO and Ga2O3 powers, having a theoretical density of 99.9% and homogeneous Ga-dopant distribution in ZnO grains. The GZO containing 5.6 wt% Ga represents the highest electrical conductivity of $7.5{\times}10^{-4}{\Omega}{\cdot}m$. In particular, many twins and superlattices were induced by doping Ga in ZnO, revealed by X-ray diffraction measurements and TEM (transmission electron microscopy) observations. Twins developed in conventional ZnO crystal are generally formed at (110) and (112) planes, but we have observed the twins at (113) plane only, which is the first report in ZnO material. Interestingly, the superlattice structure was not observed at the grains in which twins are developed and the opposite case was true. This structural change in the GZO resulted in the difference of electrical conductivity. Enhancement of the conductivity was closely related to the extent of Ga ordering in the GZO lattice. Maximum conductivity was obtained at the GZO with a superlattice structure formed ideal ordering of Ga atoms.

  • PDF