Browse > Article
http://dx.doi.org/10.5573/JSTS.2016.16.1.039

Enhanced Efficiency of Transmit and Receive Module with Ga Doped MgZnO Semiconductor Device by Growth Thickness  

Shim, Bo-Hyun (Daegu Center, Defense Agency for Technology and Quality)
Jo, Hee-Jin (Department of Analysis Assessment, Defense Agency for Technology and Quality)
Kim, Dong-Jin (Daegu Center, Defense Agency for Technology and Quality)
Chae, Jong-Mok (Daegu Center, Defense Agency for Technology and Quality)
Publication Information
Abstract
The structural, electrical properties of Ga doped MgZnO transparent conductive oxide (TCO) films by ratio-frequency(RF) magnetron sputtering were investigated. Ga doped MgZnO TCO films were deposited on the sapphire substrates at $200^{\circ}C$ varying growth thickness 200 to 600 nm. The optical properties of Ga doped MgZnO TCO films were showed above 85% transmittance from 300 to 1000 nm region. In addition, the current density ($J_{SC}$) of $Cu(In,Ga)Se_2$ (CIGS) solar cells was improved by using the MgZnO:Ga films of 500 nm thickness because of outstanding electrical properties. The $Cu(In,Ga)Se_2$ solar cells with MgZnO:Ga transparent conducing layer yielded an efficiency of 9.8% with current density ($31.8mA/cm^2$), open circuit voltage (540.2 V) and fill factor (62.2) under AM 1.5 illumination.
Keywords
Solar cells; sputtering; electrical properties; optical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, CIGS absorbers and processes, Prog.Photovoltaics vol. 18 (2010) 453-466.   DOI
2 A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films, Nat. Mater. vol. 10 (2011) 857-861.   DOI
3 Z. A. Wang, J. B. Chu, H. B. Zhu, Z. Sun, Y. W. Chen, and S. M. Huang, Growth of ZnO:Al films by RF sputtering at room temperature for solar cell applications, Solid-State Electron.vol. 53 (2009) 1149-1153.   DOI
4 T. Minami, S. Suzuki, and T. Miyata, Transparent conducting impurity-co-doped ZnO:Al thin films prepared by magnetron sputtering, Thin Solid Films vol. 398 (2001) 53-58.
5 C. Yang, X. M. Li, X. D. Gao, X. Cao, R. Yang, and Y. Z. Li, ZnMgAlO based transparent conducting oxides with modulatable bandgap, Solid State Commun. vol. 151 (2011) 264-277.   DOI
6 J. C. Lee, K. H. Kang, S. K. Kim, K. H. Yoon, and I. j. Park, RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu(In,Ga)Se2-based solar cell applications, Solar Energy Materials and Solar Cells vol. 64 (2000) 185-195.   DOI
7 T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol. vol. 20 (2005) S35-S44.   DOI
8 S. Calnan, and A. N. Tiwari, High mobility transparent conducting oxides for thin film solar cells, Thin Solid Films vol. 518 (2010) 1839-1849.   DOI
9 S.W. Shin, I. Y. Kim, G. H. Lee, G. L. Agawane, A. V. Mohokar, G. S. Heo, J. H. Kim, J. Y. Lee, Design and growth quaternary Mg and GacodopedZnO thin films with transparent conductive characteristics, Cryst. Growth Des. vol. 11 (2011) 4819-4824.   DOI
10 Z. Chen, G. Fang, C. Li, S. Sheng, G. Jie, X. Z. Zhao, Fabrication and vacuum annealing of transparent conductive Ga-doped Zn0.9Mg0.1O thin films prepared by pulsed laser deposition technique, Appl. Surf. Sci. vol. 252 (2006) 8657-8661.   DOI