• 제목/요약/키워드: Ga)Se_2$

검색결과 525건 처리시간 0.031초

Ga2Se3 층을 Cu-In-Ga 전구체 위에 적용하여 제조된 Cu(In,Ga)Se2 박막의 Ga 분포 변화 연구 (Ga Distribution in Cu(In,Ga)Se2 Thin Film Prepared by Selenization of Co-Sputtered Cu-In-Ga Precursor with Ga2Se3 Layer)

  • 정광선;신영민;조양휘;윤재호;안병태
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.434-438
    • /
    • 2010
  • The selenization process has been a promising method for low-cost and large-scale production of high quality CIGS film. However, there is the problem that most Ga in the CIGS film segregates near the Mo back contact. So the solar cell behaves like a $CuInSe_2$ and lacks the increased open-circuit voltage. In this study we investigated the Ga distribution in CIGS films by using the $Ga_2Se_3$ layer. The $Ga_2Se_3$ layer was applied on the Cu-In-Ga metal layer to increase Ga content at the surface of CIGS films and to restrict Ga diffusion to the CIGS/Mo interface with Ga and Se bonding. The layer made by thermal evaporation was showed to an amorphous $Ga_2Se_3$ layer in the result of AES depth profile, XPS and XRD measurement. As the thickness of $Ga_2Se_3$ layer increased, a small-grained CIGS film was developed and phase seperation was showed using SEM and XRD respectively. Ga distributions in CIGS films were investigated by means of AES depth profile. As a result, the [Ga]/[In+Ga] ratio was 0.2 at the surface and 0.5 near the CIGS/Mo interface when the $Ga_2Se_3$ thickness was 220 nm, suggesting that the $Ga_2Se_3$ layer on the top of metal layer is one of the possible methods for Ga redistribution and open circuit voltage increase.

Hot wall epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 열처리 효과 (Growth and effect of thermal annealing for $AgGaSe_2$ single crystal thin film by hot wall epitaxy)

  • 백승남;홍광준;김장복
    • 한국결정성장학회지
    • /
    • 제16권5호
    • /
    • pp.189-197
    • /
    • 2006
  • [$AgGaSe_2$] 단결정 박막을 수평 전기로에서 합성한 $AgGaSe_2$ 다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연성-GaAs(100))의 온도를 각각 $630^{\circ}C,\;420^{\circ}C$로 고정하여 성장하였다. 이때 단결정 박막의 결정성은 광발광 스펙트럼과 이중결정 X-선 요동곡선(DCRC)으로 부터 구하였다. $AgGaSe_2$의 광흡수 스펙트럼으로부터 구한 온도에 의존하는 에너지 밴드갭 $E_g(T)$는 Varshni 공식에 fitting한 결과 $E_g(T)=1.9501eV-(8.79x10^{-4}eV/K)T^2(T+250K)$를 잘 만족하였다. 성장된 $AgGaSe_2$ 단결정 박막을 Ag, Ga, Se 분위기에서 각각 열처리하여 10K에서 photoluminescience(PL) spectrum을 측정하여 점 결함의 기원을 알아보았다. PL 측정으로 부터 얻어진 $V_{Ag},\;V_{Se},\;Ag_{int}$, 그리고 $Se_{int}$는 주개와 받개로 분류되어졌다. $AgGaSe_2$ 단결정 박막을 Ag 분위기에서 열처리하면 p형으로 변환됨을 알 수 있었다. 또한, Ga 분위기에서 열처리하면 열처리 이전의 PL 스펙트럼을 보이고 있어서, $AgGaSe_2$ 단결정 박막에서 Ga은 안정된 결합의 형태로 있기 때문에 자연 결함의 형성에는 관련이 없음을 알았다.

Hot Wall Epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막 성장과 점결함 (Growth and point defect for $CdGa_2Se_4$single crystal thin film by hot wall epitaxy)

  • 홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.81-82
    • /
    • 2007
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C\;and\;420^{\circ}C$, respectively. After the as-grown single crystal $CdGa_2Se_4$ thin films were annealed in Cd-, Se-, and Ga -atmospheres, the origin of point defects of single crystal $CdGa_2Se_4$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd},\;V_{Se},\;Cd_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cd-atmosphere converted single crystal $CdGa_2Se_4$ thin films to an optical p-type. Also, we confirmed that Ga in $CdGa_2Se_4$/GaAs did not form the native defects because Ga in single crystal $CdGa_2Se_4$ thin films existed in the form of stable bonds.

  • PDF

열처리된 CuGaSe2 단결정 박막의 점결함연구 (A study on point defect for thermal annealed CuGaSe2 single crystal thin film)

  • 이상열;홍광준
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.154-154
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for CuGaSe2 single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe2, it was found tetragonal structure whose lattice constant at and co were 5.615 ${\AA}$ and 11.025 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaSe2 mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (MWE) system. The source and substrate temperatures were Slot and 450$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (UXD). The carrier density and mobility of CuGaSe2 single crystal thin films measured with Hall effect by van der Pauw method are 5.0l${\times}$10$\^$17/ cm$\^$-3/ and 245 $\textrm{cm}^2$/V$.$s at 293K, respectively. The temperature dependence of the energy band gap of the CuGaSe2 obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 1.7998 eV - (8.7489${\times}$10$\^$-4/ eV/K)T$^2$/(T + 335 K. After the as-grown CuGaSe2 single crystal thin films was annealed in Cu-, Se-, and Ca-atmospheres, the origin of point defects of CuGaSe2 single crystal thin films has been investigated by the photoluminescence(PL) at 10 K The native defects of V$\_$CU/, V$\_$Se/, Cu$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted CuGaSe2 single crystal thin films to an optical n-type. Also, we confirmed that Ga in CuGaSe2/GaAs did not form the native defects because Ga in CuGaSe2 single crystal thin films existed in the form of stable bonds.

  • PDF

Hot Wall Epitaxy(HWE) 법에 의해 성장된 $CuGaSe_2$ 에피레이어의 광발광 특성 (Photoluminescience propeerties for $CuGaSe_2$ epilayers grown by hot wall epitaxy)

  • 김혜정;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.100-101
    • /
    • 2008
  • To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU}$, $V_{Se}$, $Cu_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2$/GaAs did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

$Zn_2AgGaSe_4$$Zn_2AgGaSe_4$ : $Co^{2+}$ 결정의 광학적 특성 (Optical properties of $Zn_2AgGaSe_4$ and $Zn_2AgGaSe_4$ : $Co^{2+}$ crystals)

  • 김형곤;김병철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 전문대학교육위원 P
    • /
    • pp.10-12
    • /
    • 1999
  • Optical properties of $Zn_2AgGaSe_4$ and $Zn_2AgGaSe_4$:$Co^{2+}$ crystals are investigated in the visible and near-infrared regions at 298K. The direct band gap at 298K is 1.630eV for the $Zn_2AgGaSe_4$ and 1.567eV for the $Zn_2AgGaSe_4$:$Co^{2+}$ crystals, respectively. In the optical absorption and PAS spectrum of the $Zn_2AgGaSe_4$:$Co^{2+}$, we observed five impurity absorption peaks at $4220cm^{-1}$, $5952cm^{-1}$, $12422cm^{-1}$, $12987cm^{-1}$ and $14184cm^{-1}$. These impurity absorption peaks are attributed to the electronic transitions between the split energy levels of $Co^{2+}$ ions with Td symmetry of $Zn_2AgGaSe_4$ host lattice. The crystal field parameter Dq, the Racah parameter B and the spin-orbit coupling parameter $\lambda$ are given by $442cm^{-1}$, $425cm^{-1}$ and $440cm^{-1}$, respectively.

  • PDF

Cu2In3, CuGa, Cu2Se를 이용한 전구체박막을 셀렌화하여 제조한 Cu(In,Ga)Se2 박막의 미세구조 및 농도분포 변화 (Microstructure and Compositional Distribution of Selenized Cu(In,Ga)Se2 Thin Film Utilizing Cu2In3, CuGa and Cu2Se)

  • 이종철;정광선;안병태
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.550-555
    • /
    • 2011
  • A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used $Cu_2In_3$, CuGa and $Cu_2Se$ sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of $Cu_2In_3$, CuGa and $Cu_2Se$ showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and $Cu_2Se$ phases. After selenization at $550^{\circ}C$ for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin $Cu_2Se$ layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.

Hot Wall Epitaxy (HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 불순물 열처리 효과 (Growth and effect of thermal annealing of impurity for $AgGaSe_2$ single crystal thin film by hot wall epitaxy)

  • 이상열;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.79-80
    • /
    • 2007
  • To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C\;and\;420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.9501 eV - ($8.79{\times}10^{-4}$ eV/K)$T^2$/(T + 250 K). After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Ag},\;V_{Se},\;Ag_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

Hot Wall Epitaxy (HWE)법에 의해 성장된 $AgGaSe_2$ 에피레이어의 점결함 연구 (Point defect for $AgGaSe_2$ epilayers grown by hot wall epitaxy)

  • 홍명석;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.98-99
    • /
    • 2008
  • To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) 1.9501 eV - ($8.79\times10^{-4}$ eV/K)$T^2$/(T + 250 K). After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag}$, $V_{Se}$, $Ag_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

CIGS 박막 태양전지를 위한 $(In,Ga)_2Se_3$ 전구체 제작 및 분석

  • 조대형;정용덕;박래만;한원석;이규석;오수영;김제하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.285-285
    • /
    • 2010
  • $Cu(In,Ga)Se_2$ (CIGS) 박막 태양전지 제조에는 동시증발법 (co-evaporation)으로 Cu, In, Ga, Se 각 원소의 증발을 세 단계로 제어하여 CIGS 박막을 증착하는 3-stage 방법이 널리 이용된다[1]. 3-stage 중 1st-stage에서는 In, Ga, Se 원소 만을 증발시켜 $(In,Ga)_2Se_3$ 전구체 (precursor) 박막을 성장시킨다. 고효율의 CIGS 태양전지를 위해서는 $(In,Ga)_2Se_3$ 전구체 증착의 공정 변수와 이에 따른 박막 특성의 이해가 중요하다. 본 연구에서는 Mo 박막이 증착된 소다석회유리 (soda lime glass) 기판에 동시증발장비를 이용하여 280 380 의 기판 온도에서 In, Ga, Se 물질을 증발시켜 $(In,Ga)_2Se_3$/Mo/glass 시료를 제작하였으며 XRD, SEM, EDS 등의 방법을 이용하여 특성을 분석하였다. XRD 분석 결과 기판 온도 $280{\sim}330^{\circ}C$에서는 $(In,Ga)_2Se_3$ 박막의 (006), (300) 피크가 관찰되었으며, 기판 온도가 증가할수록 (006) 피크 세기는 감소하였고 (300) 피크 세기는 증가하였다. $380^{\circ}C$에서는 (110)을 포함한 다수의 피크가 관찰되었다. 그레인 (grain) 크기는 기판 온도가 증가할수록 커지며 Ga/(In+Ga) 조성비는 기판 온도에 따라 일정함을 각각 SEM과 EDS 측정을 통해 알 수 있었다. $(In,Ga)_2Se_3$ 전구체의 (300) 배향은 CIGS 박막의 (220/204) 배향을 촉진하고[2], 이것은 높은 광전변환효율에 기여하는 것으로 알려져 있다. 때문에 $(In,Ga)_2Se_3$의 (300) 피크의 세기가 가장 큰 조건인 $330^{\circ}C$를 1st-stage 증착 온도로 하여 3-stage CIGS 태양전지 공정을 수행하였으며, $MgF_2$/Al/Ni/ITO/i-ZnO/CdS/CIGS/Mo/glass 구조의 셀에서 광전변환효율 16.96%를 얻었다.

  • PDF