• Title/Summary/Keyword: GUS gene expression

Search Result 139, Processing Time 0.023 seconds

Structure and Expression of a Perilla (Perilla frutescens Britt) Gene, PfFAD3, Encoding the Microsomal ${\omega}-3$ Fatty Acid Desaturase

  • Lee, Hyang-Hwa;Pyee, Jae-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.424-427
    • /
    • 2004
  • Microsomal ${\omega}-3$ fatty acid desaturase (FAD3) is an essential enzyme in the production of the n-3 polyunsaturated fatty acid ${\alpha}-linolenic$ acid during the seed developing stage. To understand the regulatory mechanism of the gene encoding the ${\omega}-3$ fatty acid desaturase, a genomic fragment corresponding to the previously isolated perilla seed PfFAD3 cDNA was amplified from perilla (Perilla frutescens Britt) by GenomeWalker PCR. Sequence analysis of the fragment provided with identification of a 1485-bp 5'-upstream region and a 241-bp intron in the open reading frame. To determine the tissue-specificity of the PfFAD3 gene expression, the 5'-upstream region was fused to the ${\beta}-glucuronidase$ (GUS) gene and incorporated into Arabidopsis thaliana. Histochemical assay of the transgenic plants showed that GUS expression was restricted to seed and pollen, showing that PfFAD3 gene was exclusively expressed in those tissues.

Lily Pollen Growth in vitro and Agrobacterium-mediated GUS Gene Transformation via Vacuum-Infiltration

  • Park, In-Hae;Park, Hee-Sung
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.151-154
    • /
    • 2002
  • Conditions for lily pollen growth in vitro and transformation were optimized. Active pollen tube development was achieved effectively in a medium containing 7% sucrose with pH adjusted to 5.7 at the temperature of 27$^{\circ}C$ for about 16-24 hours. Pollen growth was little impaired by the presence of kanamycin at concentration up to 100 mg/L. Pollen rains near the beginning of germination stage were more reliable for Agrobacterium-mediated GUS DNA transformation via vacuum infiltration lasted for 20-40 minutes. GUS DNA integration and its expression in fully developed pollen tubes could be confirmed by Southern blot hybridization, RT-PCR and histochemical staining.

Isolation and Characterization of ACC Synthase Gene Family in Mung Bean (Vigna radiata L.): Differential Expression of the Three ACC Synthase enes in Response to Auxin and Brassinosteroid

  • Sunjoo Joo;Kim, Woo-Taek
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.61-71
    • /
    • 2000
  • By screening a cDNA library of auxin-treated mung bean (Vigna radiata L.) hypocotyls, we have isolated two full-length cDNA clones, pVR-ACS6 and pVR-ACS7, for 1-aminocyclopropane-1-carboxylate (ACC) synthase, the rate-limiting enzyme in the ethylene biosynthetic pathway. While PVR-ACS6 corresponds to the previously identified PCR fragment pMBA1, pVR-ACS7 is a new cDNA clone. A comparison of deduced amino acid sequences among auxin-induced ACC synthases reveal that these enzymes share a high degree of homology (65-75%) to VR-ACS6 and VR-ACS7 polypeptides, but only about 50% to VR-ACS1 polypeptide. ACS6 and ACS7 are specifically induced by auxin, while ACS1 is induced by cycloheximide, and to lesser extent by excision and auxin treatment. Results from nuclear run-on transcription assay and RNA gel blot studies revealed that all three genes were transcriptionally active displaying unique patterns of induction by IAA and various hormones in etiolated hypocotyls. Particularly, 24-epibrassinolide (BR), an active brassinosteroid, specifically enhanced the expression of VR-ACS7 by distinct temporal induction mechanism compared to that of IAA. In addition, BR synergistically increased the IAA-induced VR-ACS6 and VR-ACS7 transcript levels, while it effectively abolished both the IAA- and kinetin-induced accumulation of VR-ACS1 mRNA. In light-grown plants, VR-ACS1 was induced by IAA in roots, whereas W-ACS6 in epicotyls. IAA- and BR-treatments were not able to increase the VR-ACS7 transcript in the light-grown tissues. These results indicate that the expression of ACC synthase multigene family is regulated by complex hormonal and developmental networks in a gene- and tissue-specific manner in mung bean plants. The VR-ACS7 gene was isolated, and chimeric fusion between the 2.4 kb 5'-upstream region and the $\beta$-glucuronidase (GUS) reporter gene was constructed and introduced into Nicotiana tobacum. Analysis of transgenic tobacco plants revealed the VR-ACS7 promoter-driven GUS activity at a highly localized region of the hypocotyl-root junction of control seedlings, while a marked induction of GUS activity was detected only in the hypocotyl region of the IAA-treated transgenic seedlings where rapid cell elongation occurs. Although there was a modest synergistic effect of BR on the IAA-induced GUS activity, BR alone failed to increase the GUS activity, suggesting that induction of VR-ACS7 occurs via separate signaling pathways in response to IAA and BR.

  • PDF

Auxin Effects on Symptom Development of Beet Curly Top Virus Infected Arabidopsis thaliana

  • Lee, Suk-Chan
    • Journal of Plant Biology
    • /
    • v.39 no.4
    • /
    • pp.249-256
    • /
    • 1996
  • Beet curly top virus is the DNA virus that is providing useful for basic studies of the infection of Arabidopsis thaliana with viral host and provides a system for studying both resistance and the molecular basis of symptom development. An importnat aspect of symptom development observed in BCTV-infected A. thaliana (ecotype Sei-O) was the induction of cell division on phloem and surrounding cortex cells. Analysis of the expression of GUS reporter gene activity in transgenic plants containing constructs with promoter of the auxin-inducible saur gene showed that saur promoter activity was induced concomitantly in symptomatic tissues at the inflorescence shoot tips of the transgenic lines. The auxin sensitivity tests showed that hypersusceptible ecotype, Sei-O produced more amounts of callus than susceptible ecotype, Col-O. These studies indicated that changes in auxin concentration were involved in the induction of cell division in BCTV-infected plants and clearly demonstrated that there was a strong correlation between auxin-induced gene expression and the activation of cell division.

  • PDF

Transformation of Cell Wall-weakened Perilla Seedlings Using Phenolic Compound-treated Agrobacterium Cells and Recombinant Protein Expression (페놀화합물 처리 Agrobacterium 및 세포벽 약화 들깨새싹을 이용한 형질전환과 재조합 단백질 발현)

  • Chung, Il-Kyung;Shin, Dong-Il;Park, Hee-Sung
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.598-601
    • /
    • 2009
  • Perilla [Perilla frutescens (L.) Britt] seedlings are easy to grow and eaten as the health vegetable sprout. Two day old perilla seedlings since germination were given a mild wounding using cell wall lytic NaOH/SDS solution for infiltration with recombinant Agrobacterium cells treated with phenolic compounds. In the analysis of fluorometric GUS gene expression for the transformed perilla seedlings, GUS enzyme activity was the highest by the combined treatments of 50 mM acetosyringone and 0.5% NaOH solution containing 0.01% SDS implying a synergic effect. This result could be successfully applied for demonstrating hepatitis B virus antigen (HBsAg) protein expression.

Development of Transient Expression System Using Transformed Seedlings of Brassica napus var. napus (유채유묘의 형질전환을 통한 일시발현시스템의 개발)

  • Shin, Dong-Il;Park, Hee-Sung
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.489-492
    • /
    • 2006
  • For molecular breeding purpose, genetic transformation of Brassica napus cultivars has been extensively performed using Agrobacterium method. B. napus cv. napus, one of major oil crops, can be transformed via Agrobacterium-based method. We demonstrated that Agrobacterium-mediated transformation via vacuum infiltration slightly worked for the seedlings of B. napus cv. napus according to fluorometric GUS enzyme analysis. In contrast, transformation efficiency was highly enhanced when the seedlings, prior to agroinfiltration, were treated with sodium hydrosulfite solution as a chemical wounding agent. GUS gene expression in transformed seedlings that was confirmed by RT-PCR suggests their usefulness for the development of transient expression system.

Development of Transient Gene Expression System using Seedlings

  • Choi, Jang-Won;Park, Hee-Sung
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.193-199
    • /
    • 2011
  • An efficient transient expression system has been developed and characterized for the production of foreign genes in seedlings. The seedlings can be easily produced from commercial seeds used for vegetable sprouts. In principal, a chemical abrasive was employed to generate wounds in seedlings prior to vacuum-infiltration with Agrobacterium tumefaciens bearing the target gene. This optimized chemical wounding-assisted agro-infiltration process resulted in up to 15-fold increase in $\beta$-glucuronidase (GUS) enzyme activity. This procedure has been used efficiently to express hepatitis B surface antigen (HBsAg) protein in a transient mode. Therefore, seedlings with proper wounds can be suggested as a convenient tool for the production of useful recombinant proteins.

Electroporation Conditions for DNA Transfer into Somatic Embryogenic Cells of Zoysia japonica (들잔디 체세포 배발생 세포로의 DNA 전입을 위한 Electroporation 조건 구명)

  • 박건환;안병준
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 1998
  • We have reported previously that intact embryogenic cells can be used instead of protoplasts for electroporation-mediated transformation of zoysiagrass and rice. In this study, conditions of the tissue electroporation were examined to optimize the procedures. Embryogenic cell suspensions were established in liquid MS medium containing 2 mg/L of 2,4-D with embryogenic calluses induced from mature embryos of Z. japonica. The suspension-cultured cell clumps were electroporated with 35S-gusA expression vector DNA, and degrees of DNA introduction into the cells were determined by histological expression rates of the gusA marker gene. DNA transfer into the cell clumps occurred in wide range of voltage (100-400 V) and capacitance (10-1980 $\mu\textrm{F}$), but more in the ranges of 200-300 V and 330-800 $\mu\textrm{F}$ DNA concentrations higher than 6 $\mu\textrm{g}$/mL were adequate for GUS expression of the electroporated cells. DNA transfers were confirmed in all three embryogenic cell lines but only in one out of eleven non-embryogenic lines. Positive GUS expressions occurred with DNAs added even 20-40 h after pulse treatments. As a promoter of gusA, Act1 and Ubi1 were effective 7 and 5 times than 35S respectively in number of GUS expression units on electroporated cell clumps. Embryogenic cell clumps survived and regenerated into plantlets after pulse treatments of wide range of conditions.

  • PDF

Analysis of Housekeeping Gene Expression in Mice Administered to GM and non-GM Cabbage (유전자변형 배추를 섭취한 마우스 장기에서의 Housekeeping Gene의 발현 분석)

  • Lee, Dong-Youb;Heo, Jin-Chul;Kim, Kyung-Hae;Han, Song-Yi;Cho, Hyun-Seok;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.84-87
    • /
    • 2008
  • We used RT-PCR to measure housekeeping gene expression in mice fed GM and non-GM cabbage, in an effort to evaluate the risk of GM food to humans. After normalization of housekeeping gene levels, highly uniform expression may be seen in many organisms during various stages of development and under different environmental conditions. We assessed the expression of four genes in Chinese cabbage; these were Profilin, Tubulin-alpha (Tub-1), Heat-shock protein (Bchsp 17.6), and Ubiquitin conjugating enzyme (UBE). We measured the expression of four well-known housekeeping genes in mice: ${\beta}$-actin, (${\beta}$-act), ${\beta}$-2-microglobulin(B2m), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ${\beta}$-glucuronidase (Gus). Gene expression was measured in liver, stomach, small intestine, large intestine, kidney, and spleen of mice fed GM or non-GM cabbage. No significant expression differences were found.

Action mechanism of upstream open reading frame from S-adenosylmethionine decarboxylase gene as a in vivo translational inhibitor (S-Adenosylmethionine decarboxylase 유전자의 upstream open reading frame이 in vivo에서 translational inhibitor 로서의 작용 기작)

  • Choi, Yu-Jin;Park, Ky-Young
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.87-93
    • /
    • 2011
  • S-Adenosylmethionine decarboxylase (SAMDC; EC 4.1.4.50), a key enzyme for polyamines biosynthesis, was tightly regulated for homeostatic levels. Carnation SAMDC gene (CSDC9) has an small upstream open reading frame (uORF) of 54 amino acids in 5'-leader sequence. To explore the functional mechanism of uORFs in controlling translation, we used a GUS reporter gene driven with the 35S promoter and uORF region of SAMDC gene for making transgenic tobacco plants. In our experiment, there were a translational inhibition of its downstream GUS ORF by SAMDC uORF sequence or SAMDC uORF protein. Expecially, translational inhibition was most effective in point-mutated construct, in which the start codon was changed. Therefore, this results suggested the ribosomal stalling might be involved in this translational inhibitory process. The frame shift in amino acid sequence of SAMDC uORF with start codon and stop codon resulted in a moderate increasing in GUS activity, suggesting the native amino acid sequence was important for a function as a translational inhibitor. Also, we showed that the production of GUS protein was significantly inhibited in the presence of the small uORF using histochemical analysis of GUS expression in seedlings and tobacco flowers. Importantly, the small uORF sequence induced a real peptide of 5.7 kDa, which was provided the presence of SAMDC uORF peptide band using an in vitro transcription/translation system. The peptide product of uORF might interact with other components of translational machinery as well as polyamines, which was resulted from that polyamine treatment was inhibited GUS protein band in SDS-PAGE experiment.