• Title/Summary/Keyword: GTX project

Search Result 7, Processing Time 0.018 seconds

What the GTX and Grand Paris projects can learn from each other

  • Vivant, Emmanuel
    • International Journal of Railway
    • /
    • v.4 no.3
    • /
    • pp.64-69
    • /
    • 2011
  • Paris has one of the world's oldest metropolitan railway systems and was also a pioneer when it introduced the RER in the 70s. With planning objectives comparable to the GTX, the RER aimed at serving outer suburbs while fully crossing the city center at higher speeds than the Metro. Maybe more relevant is the comparison between the planned Grand Paris Express and GTX projects, in terms of their planning ambitions and their development framework. This article will introduce the main planning ideas behind the Metro and the RER in Paris, and try to draw relevant comparisons with the GTX plan. It will also present the plans and financing framework for the Grand Paris Express and compare it with the BTO scheme contemplated for GTX, and draw some recommendations for successful implementation.

A Case Study of GTX A Tunnel Station Blasting with Electronic Detonator (GTX A 터널정거장에 대한 전자뇌관 적용 시공 사례)

  • Hwang, Nam-Sun;Kim, Kyung-Hyun;Kim, Jeoung-Hwan;Seong, Yoo-Hyeon;Lee, Chang-Won
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.24-34
    • /
    • 2021
  • Electronic detonators are widely used in various construction sites due to accurate delay time. Including the cases with exceeded noise and vibration from site using electric/non-electric detonator, electronic detonators are used to improve blast fragmentation or to reduce the cost of secondary partial blasting. Furthermore, the number of cases using electronic detonators are increased for reduction of the cost and construction period by maximizing operations efficiency. This case study is about applying electronic detonators on large section station, tunnel construction site which is the part of urban area GTX A project. Although it was initially planned to utilize non-electric detonators, damage was inflicted on safety-thing. We have considered blasting method using electronic detonators as solution of this problem. By applying electronic detonators, we not only satisfied environmental regulations but also prevented nearby safety-thing from getting damaged. In addition, we were able to shorten the construction period than the initial plan by conducting single simultaneous blasting on large section station, in order to ensure safe and efficient construction.

Variable Suspension Design for Active Pantograph

  • Shin, Seungkwon;Kim, Hyungchul;Jung, Hosung;Park, Jongyoung;Kim, Sangahm
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.105-108
    • /
    • 2015
  • There are a lot of traffic jams in the metropolitan area and the commuting time has been longer nowadays. So the urban people has been interested in the GTX(Great Train Express) project in Korea. The GTX is the train which runs at 200km/h speed in underground tunnels. If the train also operates at high speed in tunnel section, the pressure wave will happen and the uplift force of pantograph may vary abruptly. If the rigid trolley bar system is used in tunnel section, it is difficult to improve the commercial speed of train. In order to improve the train speed in tunnel section, this paper presents the new pantograph concepts which can change the suspension stiffness and deals with the dynamic behavior characteristics of pantograph according to the parameter variation.

An Analytical Study on the Patents Substance of Urban Underground Space Development Technology (도시지하공간 개발기술에 대한 특허동향 분석)

  • Lee, Gahng-Ju
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.129-137
    • /
    • 2019
  • The purpose of this study is to present systematic information and direction to urban underground space development industry, civil engineering and R&D. Regarding the development of urban underground space, the situation in Korea, especially now in Seoul, can be called an underground Renaissance. The Superground project, which has been going on for several years through international competition, is now completed and is about to open the Seoul Architecture Museum. Leading underground space complex development project of Yeongdongdaero, which is the largest living underground space in human history, spectral projects such as the Seoul section of the GTX routes, making underground roads of the Dongbu Expressway and the Seobu Expressway are now speeding up progress. Recently, plans have been made to use the underground more actively through the restructuring project of Gwanghwamun Square, the face of Seoul. And then, patents are indispensable resources for establishing a strategy for R&D as one of the indices showing what technologies have been developed and what technology development will be done in the future. Based on this background, this study attempts to classify and define the technical elements of urban underground space development through the analysis of patents of major countries in the world, and analyze and present state of technology level and situation accordingly.

Field Tests Investigating the Ground Borne Vibration Induced by Underground Railway Tunnel (터널 내 열차주행으로 인한 지반진동 현장측정시험)

  • Ahn, Sung-Kwon;Bang, Eun-Seok;Lee, Bae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.208-213
    • /
    • 2010
  • This paper describes the instruments used, and the test procedures adopted, and the findings obtained from a research project aiming to investigate, via full-scale field tests, the ground borne vibration caused by underground railway tunnel constructed in hard rock. The ground borne vibration induced by high-speed trains (i.e. the Korea Train eXpress (KTX) services) with a speed of approximately 200km/hr was measured inside the borehole constructed in the close proximity to the KTX tunnel using 3-component borehole seismographs in order to investigate the wave propagation of ground borne vibration. This paper also discusses the limitation associated with the current practice of measuring ground borne vibration using conventional borehole seismograph.

Deeper Underground Greater Metropolitan Express Train Network Effect (긴급제언 - 대심도 광역지하급행철도 네트워크 효과)

  • Lee, Sun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.4
    • /
    • pp.45-50
    • /
    • 2009
  • The modal split structure of the Korea's transportation system has been dominated by road-oriented structure. The shortage of the inftrastructure to accommodate the rapidly increasing travel demand has brought about socio-economic losses such as severe traffic congestion and high logistic costs, and thereby weakened the competitiveness of the country. Highway transportation sector is more vulnerable to energy consumption comparing with railway sector since the highway sector is dependent mostly on fossil fuels for its energy source. In 2006 annual road cogestion costs in Korea reached 24.6 trillion won, with an average annual growth rate of 5.4%. The annual road congestion cost of intercity highways were 9.2 trillion won. As the new cities that recently developed are located far from Seoul area, the boundary of commuting in Seoul metropolitan area is extended. It makes passengers have longer trips with longer travel time, and the congestion problem to be more serious. In this regards, Gyeonggi Provincial Government proposed a deeper underground metropolitan express train system for the greater Metropolitan area. which is named as GTX. Gyeonggi Province suggested 3 key underground lines, based on the outcome of the feasibility study conducted by the Korea Society of Transportation, and submitted to the Ministry of Land Transportation and Maritime Affairs for its review. If the project is approved for construction and completed in 2016, the daily volume of surface traffic bound for Seoul will be reduced substantially and therefore the users will be benefitted for time savings by an annual amount of 2 trilion won every year.

  • PDF