• Title/Summary/Keyword: GTPase activity

Search Result 36, Processing Time 0.023 seconds

Ras GTPases and Ras GTPase Activating Proteins (RasGAPs) in Human Disease (Ras GTPase 및 Ras GTPase activating protein과 사람의 질병)

  • Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1100-1117
    • /
    • 2018
  • The Ras superfamily of small G-proteins acts as a molecular switch on the intracellular signaling pathway. Upon ligand stimulation, inactive GTPases (Ras-GDP) are activated (Ras-GTP) using guanine nucleotide exchange factor (GEF) and transmit signals to their downstream effectors. Following signal transmission, active Ras-GTP become inactive Ras-GDP and cease signaling. However, the intrinsic GTPase activity of Ras proteins is weak, requiring Ras GTPase-activating protein (RasGAP) to efficiently convert RAS-GTP to Ras-GDP. Since deregulation of the Ras pathway is found in nearly 30% of all human cancers, it might be useful to clarify the structural and physiological roles of Ras GTPases. Recently, RasGAP has emerged as a new class of tumor-suppressor protein and a potential therapeutic target for cancer. Therefore, it is important to clarify the physiological roles of the individual GAPs in human diseases. The first RasGAP discovered was RASA1, also known as p120 RasGAP. RASA1 is widely expressed, independent of cell type and tissue distribution. Subsequently, neurofibromatosis type 1 (NF1) was discovered. The remaining GAPs are affiliated with the GAP1 and synaptic GAP (SynGAP) families. There are more than 170 Ras GTPases and 14 Ras GAP members in the human genome. This review focused on the current understanding of Ras GTPase and RasGAP in human diseases, including cancers.

Regulation of a Novel Guanine Nucleotide Binding Protein Tissue Transglutaminase ($G{\alpha}_n$).

  • Im, Mie-Jae
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.95-101
    • /
    • 2001
  • Tissue transglutaminase (TGII, $G{\alpha}h$) belongs to a family of enzymes which catalyze post-translational modification of proteins by forming isopeptides via $Ca^{2+}$-dependent reaction. Although TGII-mediated formation of isopeptides has been implicated to play a role in a variety of cellular processes, the physiological function of TGII remains unclear. In addition to this Tease activity, TGII is a guanosine triphosphatase (GTPase) which binds and hydrolyzes GTP It is now well recognized that the GTPase action of TGII regulates a receptor-mediated transmembrane signaling, functioning as a signal transducer of the receptor. This TGII function signifies that TGII is a new class of GTP-binding regulatory protein (G-protein) that differs from "Classical" heterotrimeric G-proteins. Regulation of enzyme is an important biological process for maintaining cell integrity. This review summarizes the recent development in regulation of TGII that may help for the better understanding of this unique enzyme. Since activation and inactivation of GTPase of TGII are similar to the heterotrimeric G-proteins, the regulation of heterotrimeric G-protein in the transmembrane signaling is also discussed.

  • PDF

Mutational Analysis of the Effector Domain of Brassica Sar1 Protein

  • Kim, Min-Gab;Lee, Jung-Ro;Lim, Hye-Song;Shin, Mi-Rim;Cheon, Min-Gyeong;Lee, Deok-Ho;Kim, Woe-Yeon;Lee, Sang-Yeol
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.109-114
    • /
    • 2007
  • Sar1p is a ras-related GTP-binding protein that functions in intracellular protein transport between the endoplasmic reticulum (ER) and the Golgi complex. The effector domain of Ras family proteins is highly conserved and this domain is functionally interchangeable in plant, yeast and mammalian Sar1. Using a recombinant Brassica sar1 protein (Bsar1p) harboring point mutations in its effector domain, we here investigated the ability of Sar1p to bind and hydrolyze GTP and to interact with the two sar1-specific regulators, GTPase activating protein (GAP) and guanine exchange factor (GEF). The T51A and T55A mutations impaired Bsar1p intrinsic GTP-binding and GDP-dissociation activity. In contrast, mutations in the switch domain of Bsar1 did not affect its intrinsic GTPase activity. Moreover, the P50A, P54A, and S56A mutations affected the interaction between Bsar1p and GAP. P54A mutant protein did not interact with two regulating proteins, GEF and GAP, even though the mutation didn't affect the intrinsic GTP-binding, nucleotide exchange or GTPase activity of Bsar1p.

Analyses of Pungency-Related Factors of Field and Rice Paddy Garlic (마늘과 논마늘의 주요 매운맛 관련 인자의 분석)

  • Oh, Hye-Lim;Kim, Na-Yeon;Sohn, Chan-Wok;Ryu, Bo-Ram;Yoon, Jun-Hwa;Kim, Mee-Ree
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.655-660
    • /
    • 2012
  • The purpose of this study is to evaluate pungency-related factors of field garlic (FG) and rice paddy garlic (RG) from Youncheon province. Allicin, alliin, and S-allyl-L-cysteine (SAC) contents were analyzed by HPLC. In addition, activities of alliinase, GTPase (${\gamma}$-glutamyltranspeptidase), and pyruvate content of garlic were measured. The moisture content of RG (65.86%) was higher than that of FG (63.34%). However, crude lipid, crude protein, crude ash, and carbohydrate contents of RG were lower than those of FG. The alliin contents of FG and RG were 8.97 and 8.22 mg/g, respectively. The allicin content of FG (2.83 mg/g) was higher than that of RG (2.22 mg/g). Further, SAC content of FG (1.74 mg/g) was higher than that of RG (0.104 mg/g). Alliinase activities of FG and RG were similar, whereas the GTPase activity of FG was higher than that of RG. These results show that the stronger pungency of FG is due to the higher amount of alliin and SAC as well as the higher activity of GTPase compared to RG.

Multiple Effects of a Novel Epothilone Analog on Cellular Processes and Signaling Pathways Regulated by Rac1 GTPase in the Human Breast Cancer Cells

  • Zhang, Hong;An, Fan;Tang, Li;Qiu, Rongguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.109-120
    • /
    • 2014
  • The epothilones are a class of microtubule inhibitors that exhibit a strong antitumor activity. UTD2 is a novel epothilone analog generated by genetic manipulation of the polyketide biosynthetic gene cluster. This study investigated the effects of UTD2 on the actin cytoskeleton and its critical regulators, and the signaling pathways which are essential for cell motility, growth and survival in MCF-7 breast cancer cells. Results showed that UTD2 inhibited the cellular functions of actin cytoskeleton, such as wound-closure, migration and invasion, as well as adhesion. Our study further demonstrated that UTD2 suppressed Rac1 GTPase activation and reduced the activity of PAK1, which is a downstream effector of Rac1, while the activity of Cdc42 was not affected. Additionally, the phosphorylation of p38 and ERK were significantly inhibited, but the phosphorylation of JNK remained the same after UTD2 treatment. Moreover, UTD2 inhibited the activity and mRNA expression of MMP-2, which plays a key role in cell motility. UTD2 also reduced the phosphorylation of Akt, which is an important signaling kinase regulating the cell survival through Rac1. Furthermore, UTD2 interrupted the synergy between Rac1 and Raf in focus formation assays. Taken together, these results indicated that UTD2 exerted multiple effects on the actin cytoskeleton and signaling pathways associated with Rac1. This study provided novel insights into the molecular mechanism of the antineoplastic and antimetastatic activities of epothilones. Our findings also suggest that the signaling pathways regulated by Rac1 may be evaluated as biomarkers for the response to therapy in clinical trials of epothilones.

The Study of Bfa1pE438K Suggests that Bfa1 Control the MitoticExit Network in Different Mechanisms Depending on DifferentCheckpoint-activating Signals

  • Kim, Junwon;Song, Kiwon
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.251-260
    • /
    • 2006
  • During mitosis, genomic integrity is maintained by the proper coordination of anaphase entry and mitotic exit via mitotic checkpoints. In budding yeast, mitotic exit is controlled by a regulatory cascade called the mitotic exit network (MEN). The MEN is regulated by a small GTPase, Tem1p, which in turn is controlled by a two-component GAP, Bfa1p-Bub2p. Recent results suggested that phosphorylation of Bfa1p by the polorelated kinase Cdc5p is also required for triggering mitotic exit, since it decreases the GAP activity of Bfa1p-Bub2p. However, the dispensability of GEF Lte1p for mitotic exit has raised questions about regulation of the MEN by the GTPase activity of Tem1p. We isolated a Bfa1p mutant, $Bfa1p^{E438K}$, whose overexpression only partially induced anaphase arrest. The molecular and biochemical functions of $Bfa1p^{E438K}$ are similar to those of wild type Bfa1p, except for decreased GAP activity. Interestingly, in $BFA1^{E438K}$ cells, the MEN could be regulated with nearly wild type kinetics at physiological temperature, as well as in response to various checkpoint-activating signals, but the cells were more sensitive to spindle damage than wild type. These results suggest that the GAP activity of Bfa1p-Bub2p is responsible for the mitotic arrest caused by spindle damage and Bfa1p overproduction. In addition, the viability of cdc5-2 ${\Delta}bfa1 $ cells was not reduced by $BFA1^{E438K}$, suggesting that Cdc5p also regulates Bfa1p to activate mitotic exit by other mechanism(s), besides phosphorylation.

Icariin promotes melanin synthesis (Icariin의 멜라닌합성 촉진 작용)

  • Cha, Su Bin;Park, Seol A;Kang, Lea Minju;Woo, Won Hong;Mun, Yeun Ja
    • Herbal Formula Science
    • /
    • v.28 no.1
    • /
    • pp.81-90
    • /
    • 2020
  • Objectives : This study was conducted to investigate the effects of major constituents of Epimedium koreanum Nakai (Icariin, epimedium A, epimedium B, and epimedium C) on melanin synthesis. Methods : We measured melanin contents, tyrosinase activity, and expression of Rab27a in B16F10 cells cultured with Epimedium koreanum Nakai ethanol extract (EKN) and their major constituents. After treatment with H89 and dibutyryl cAMP, which inhibit or promote the activation of PKA, we observed changes in melanin synthesis and tyrosinase activity stimulated by EKN. Results : Among them, EKN and icariin enhanced tyrosinase activity and melanin contents. We confirmed that EKN augmented melanin synthesis via cAMP/PKA pathway. Icariin-induced tyrosinase activity and melanin content were attenuated by PKA inhibitor H89, while melanogenic effect of icariin was further augmented by cAMP analog, dbc AMP. However, icariin did not affect the expression of small GTPase Rab27a involved in melanosome transport. Conclusions : These results suggest that icariin promotes melanogenesis through cAMP/PKA pathway but does not affect small GTPase Rab27a.

The Effect of pH and Various Cations on the GTP Hydrolysis of Rice Heterotrimeric G-protein α Subunit Expressed in Escherichia Coli

  • Seo, Hak-Soo;Jeong, Jin-Yong;Nahm, Min-Yeop;Kim, Sam-Woong;Lee, Sang-Yeol;Bahk, Jeong-Dong
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.196-200
    • /
    • 2003
  • Previously, we reported the biochemical properties of RGA1 that is expressed in Escherichia coli (Seo et al., 1997). The activities of RGA1 that hydrolyzes and binds guanine nucleotide were dependent on the $MgCl_2$ concentration. The steady state rate constant ($k_{cat}$) for GTP hydrolysis of RGA1 at 2 mM $MgCl_2$ was $0.0075{\pm}0.0001\;min^{-1}$. Here, we examined the effects of pH and cations on the GTPase activity. The optimum pH at 2 mM $MgCl_2$ was approximately 6.0; whereas, the pH at 2 mM $NH_4Cl$ was approximately 4.0. The result from the cation dependence on the GTPase (guanosine 5'-triphosphatase) activity of RGA1 under the same condition showed that the GTP hydrolysis rate ($k_{cat}=0.0353\;min^{-1}$) under the condition of 2mM $NH_4Cl$ at pH 4.0 was the highest. It corresponded to about 3.24-fold of the $k_{cat}$ value of $0.0109\;min^{-1}$ in the presence of 2 mM $MgCl_2$ at pH 6.0.

Identification of Small GTPases That Phosphorylate IRF3 through TBK1 Activation Using an Active Mutant Library Screen

  • Jae-Hyun Yu;Eun-Yi Moon;Jiyoon Kim;Ja Hyun Koo
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.48-58
    • /
    • 2023
  • Interferon regulatory factor 3 (IRF3) integrates both immunological and non-immunological inputs to control cell survival and death. Small GTPases are versatile functional switches that lie on the very upstream in signal transduction pathways, of which duration of activation is very transient. The large number of homologous proteins and the requirement for site-directed mutagenesis have hindered attempts to investigate the link between small GTPases and IRF3. Here, we constructed a constitutively active mutant expression library for small GTPase expression using Gibson assembly cloning. Small-scale screening identified multiple GTPases capable of promoting IRF3 phosphorylation. Intriguingly, 27 of 152 GTPases, including ARF1, RHEB, RHEBL1, and RAN, were found to increase IRF3 phosphorylation. Unbiased screening enabled us to investigate the sequence-activity relationship between the GTPases and IRF3. We found that the regulation of IRF3 by small GTPases was dependent on TBK1. Our work reveals the significant contribution of GTPases in IRF3 signaling and the potential role of IRF3 in GTPase function, providing a novel therapeutic approach against diseases with GTPase overexpression or active mutations, such as cancer.

RGS Proteins and Opioid Signaling (Regulator of G-protein Signaling (RGS) 단백질과 아편 신호 전달)

  • Kim, Kyung Seon;Palmer, Pamela Pierce;Kim, Ki Jun
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The regulators of the G protein signaling (RGS) proteins are responsible for the rapid acceleration of the GTPase-activity intrinsic to the heterotrimeric G protein alpha subunits. As GTPase-activating proteins (GAP), the RGS proteins negatively regulate the G-protein signals. Recently, the RGS proteins are known to be one of the important regulators of opioid signal transduction and the development of tolerance. The aim of this study was to review the recent discovery and understanding of the role of RGS proteins in opioid signaling and the development of tolerance. This information will be useful for medical personnel, particularly those involved in anesthesia and pain medicine, by helping them improve the effective use of opioids and develop new drugs that can prevent opioid tolerance.