• Title/Summary/Keyword: GTAW welding

Search Result 139, Processing Time 0.025 seconds

THE EFFECTS OF HEAT INPUT AND GAS FLOW RATE ON WELD INTEGRITY FOR SLEEVE REPAIR WELDING OF IN-SERVICE GAS PIPELINES

  • Kim, Young-pyo;Kim, Woo-sik;Bani, In-wan;Oh, Kyu-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.390-395
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMA W and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The [mite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

A Study on Prediction of Temperature Distribution in Pipe Girth Welding by Mapping Theory (사상 이론을 이용한 파이프 원주 용접의 온도 분포 예측에 관한 연구)

  • Jo, Yeong-Tae;Na, Seok-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2935-2944
    • /
    • 2000
  • Gas tungsten arc(GTA) welding is used to rrpiar the seat ring in swing type check valve in power plant because of its high weld quality. In order to automate the welding process, it is needed to analyze the process of inside pipe girth welding. In this study, the shapes of weld bead on pipe inside and outside were predicted and its validity was investigated. On the assumption that the welding arc had a bivariate gaussian distribution, analytical solution was derived to predict the temperature distribution in pipe weld using mapping under consideration of physical relationships. The size of weld bean could be predicted from this equation and its accuracy was verified by experiments.

STUD Welding on High Hardness Armor Steel of KWV (차륜형장갑차 고경도장갑강에 대한 스터드 용접의 적용)

  • Cho, Hwan-Hwi;Shin, Yong-cheol;Yi, Hui-jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.567-573
    • /
    • 2016
  • GMAW and GTAW processes have been used for welding of equipment mounting pads during decades. For improving the mobility and survivability of KWV(Korean Wheeled Vehicle), various types of equipment are required and numbers of pads for welding were increased. In this research, for improving productivity of mounting pads welding process, new technology of stud welding was studied. In this study, mechanical properties of stud weldment were investigated to compare with those of GMAW weldment. Also, research of stud weldment durability was carried out and proved its fatigue strength under the condition of KWV's 32,000 km load profile.

Characteristics of 18Cr ferritic stainless steel welds (18Cr 페라이트계 스테인리스강의 용접특성)

  • Lee, Won-Bae;Kim, Jeong-Gil;U, In-Su;Lee, Jong-Bong
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.123-124
    • /
    • 2006
  • This study aimed at exploiting low heat input characteristic of laser welding to effectively control grain coarsening in the fusion zone(FZ) and heat affected zone(HAZ) of 1.5mm thick 18wt% Cr ferritic stainless steel weld. The study demonstrated that as compared with gas tungsten arc welding(GTAW), laser welding brought about significant grain refinement in the FZ and HAZ. However, the impact absorbed energy of GTA weld was superior than that of laser weld because the strengthening effect during welding and cooling stage was higher In laser weld than that in GTA weld. The coarser grains in each weld than base metal resulted in an inferior toughness.

  • PDF

A Study on Friction stir welding Properties of Extruded Aluminum Panels for Rolling Stock (철도차량용 알루미늄 압출 패널의 마찰교반용접 특성에 관한 연구)

  • Park, Young-Bin;Goo, Byeong-Choon;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2053-2058
    • /
    • 2008
  • Extruded aluminium panels have been widely used for railway vehicle structures because of their light specific weight and other merit. In the past, GMAW (Gas Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) were mainly used to join aluminium panels. But recently friction stir welding (FSW) is widely used. due to its lots of advantage. In this study aluminium A6005-T6 which are used for car body structures was chosen. The influence of main parameters such as : pin rotating speed, welding speed, shoulder diameter, pin length and tilting angle on mechanical properties was examined. Optical microscope observation, micro hardness test and tensile test were carried out. Tensile strength of the stir welded plates is 74% of that of the base material.

  • PDF

A Study on Productivity Improvement in Narrow Gap TIG Welding (Narrow Gap 맞대기 TIG 용접에서 생산성 향상을 위한 연구)

  • Jun, Jae-Ho;Kim, Sung-Ryul;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • Adoption of narrow gap welding shall be increased for the butt joint of thick plate, because the deformation and welding cost is reduced by decrease of cross-sectional area. However, sometimes narrow gap causes defects such as lack of fusion since it has small groove angle and narrow groove width. Therefore, GMAW, GTAW and SAW process shall be adopted to narrow gap welding with small bead hight and low deposition rate. In this study, Super-TIG welding using C-type strip was applied to semi-narrow gap butt joint in order to increase the welding productivity. High deposition rate 10kg/hr was obtained by high current 600A without undercut, humping bead and other welding defects. Measuring the mean and standard deviation of the melting depth to evaluate the developed processes, the fusion line type was determined by measuring the difference between maximum and minium melting depth. Furthermore, a model on arch fusion line and linear fusion line was suggested in order to prevent LF on groove wall in narrow gap butt welding.

An Experimental Study on Prediction of Bead Geometry for GTA Multi-pass Welding in Underhead Position (GTA 아래보기 자세 다층용접부의 비드형상 예측에 관한 실험적 연구)

  • Park, Min-Ho;Kim, Ill-Soo;Lee, Ji-Hye;Lee, Jong-Pyo;Kim, Young-Su;Na, Sang-Oh
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • The automatic arc welding is generally accepted as the preferred joining technique and commonly chosen for assembly of large metal structures such as in areas of automotive, aircraft and shipbuilding due to its joint strength, reliability, and low cost compared to other joint processes. Recently, several mathematical models have been developed and studied for control and monitoring welding quality, productivity, microstructure and weld properties in arc welding processes. This study indicates the prediction of process parameters for the expected welding quality with accordance to the adaptive GTA welding process. Furthermore, the mathematical models is also develop to aid the selection of an optimal welding process as the generation of process controls to predict the bead geometry as a function output parameters in the GTA welding process. The developed models through this study showed comparatively excellent predicted results, and will extend to other welding processes to integrate an optimized system for the robotic welding process.

Mechanical Properties Evaluation of GTAW for INCONEL 718 alloy apply to Cryogenic Condition (극저온 환경에 적용되는 INCONEL 718합금의 GTAW 기계적 특성 평가)

  • Kim, Ki-Hong;Moon, In-Sang;Rhee, Byung-Ho;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.619-622
    • /
    • 2009
  • INCONEL 718합금은 상온, 고온 및 저온환경에서 기계적 특성이 아주 우수하다. 상온에서의 모재 강도는 약 900MPa이며, 열처리 후 시효경화처리에 의해 강도가 약 1300MPa까지 증가한다. 이러한 INCONEL 718합금의 기계적 특성은 시험결과에서도 유사한 값을 나타내었고, GTAW 용접부의 상온 기계적 특성도 모재보다 우수한 강도를 나타내었다. 또한 저온에서의 기계적 특성은 모든 시험조건에서 상온보다 높은 강도를 나타내었으며, 열처리 모재시편과 용접시편은 1400MPa에 달하는 고강도를 나타내었다. 이러한 결과를 바탕으로 INCONEL 718합금의 저온 기계적 특성이 우수한 것을 증명하였고, 용접성 또한 모재의 특성과 같이 상온 및 저온 특성이 우수한 것을 알 수 있었다. INCONEL 718 합금과 STS 316L의 이종접합의 경우에도 $-100^{\circ}C$환경의 인장강도가 상온보다 300MPa 이상 증가하는 것을 알 수 있었다. 따라서, INCONEL 718합금은 $100^{\circ}C$이하부터 일정온도까지는 기계적 특성이 계속 증가 할 것으로 사료되며, 극저온 고압 상태로 공급되는 산화제 배관 제작에 적합한 소재로 판단된다.

  • PDF

Study on the Frition Welding Characteristics of Oxygen Free High Conductivity Copper (무산소동의 마찰 용접 특성에 관한 연구)

  • 정호신;소전강
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 1997
  • Copper and its alloy had been used widely because of its pronouncing characteristics on their high thermal and electrical conductivity. Various fusion welding methods, such as SMAW, SAW, GTAW, GMAW, Electroslag welding amd so on are applied to weld copper and its alloy. But fusion welding of copper has so many welding problems. THe most serious problems were poor penetration amd high thermal contration stress due to its high thermal conductivity and porosity could be formed by rapid cooling rate of fusion welding. In order to avoid such fusion welding problems, preheating, peering and heat treatment must be applied to obtain sound weld joint of copper. But preheating induce another welding problem such as grain coarsening of weld heat affected zone. This grain coarsening reduces ductility and strength of weld joint. In this view of point, friction welding of copper is triedm to obtain sound weld joint of copper by reducing metallurgical problems. This study introduced new concept of heat input for evaluating the friction weldability of copper. As a result, weldability of copper could be evaluated by this new concept of heat input.

  • PDF

Friction Stir Welding of Ferritice Stainless Steel (페라이트계 스테인리스강의 마찰교반접합)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.14-17
    • /
    • 2014
  • Ferritic stainless steels are widely used in the construction industry and in exhaust manifolds due to their low cost and relatively superior stress corrosion cracking resistance and pitting corrosion resistance compared to austenite stainless steels. Ferritic stainless steels are currently welded by various welding process including gas tungsten arc welding (GTAW), electron resistance welding (ERW) and laser beam welding. However, when these stainless steels are welded by fusion welding, some problems occur in the fusion zone (FZ) and heat affected zone (HAZ). First, the ductility of the weld is reduced due to the grain growth in the FZ and HAZ. Second, as its HAZ is frequently sensitized during welding, corrosion resistance deteriorates in this region due to the Cr depletion zone. To prevent these problems, it is recommended that ferritic stainless steels be welded with a low heat input. In this study, recent researches in the view of friction stir welded ferritic stainless steels are briefly reviewed.