• 제목/요약/키워드: GST M1

검색결과 170건 처리시간 0.035초

원숭이 소장 약물대사효소 유전자 발현에 미치는 3-methylcholanthrene 영향 (Effects of 3-methylcholanthrene on the Expression of Drug Metabolizing Enzyme Genes in Monkey Intestine)

  • 이경원;아사오카;신윤용
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권1호
    • /
    • pp.19-24
    • /
    • 2004
  • In order to understand the mechanism of the regulation of drug metabolizing enzyme gene expression, we have studied the induction of CYP1A1 and $GST\alpha,$ $\mu,$ $\pi$ enzymes in Japanese monkey and rhesus monkey after the treatment with 3-methylcholanthrene (3MC) and di-n-butyl phthalate (DBP) and bisphenol A (BPA). The levels of mRNA were measured by RT-PCR in brain, intestine and liver. In the case of adult monkey, treatment with 3MC induced CYP1A1 mRNA in intestine by 11-fold. The treatment with DBP induced CYP1A1 mRNA. Effects of 3MC and DBP on GST mRNA expression was not clear. But $GST\mu$ was slightly inhibited by the treatment with 3MC and DBP. $GST\alpha$ was induced in intestine by 1.5-fold. $GST\pi$ was slightly induced by the treatment with 3MC and DBP in intestine. In the case of fetus monkey, the basal levels of fetus CYP1A1 mRNA and GSTs mRNA were relatively low compared to adult monkey. As the age of monkey increased, the basal levels of CYP1A1 mRNA were also increased. 3MC induced the expression of CYP1A1 mRNA didn't significantly induce CYP1A1 mRNA in intestine. The levels of $GST\mu$ and $GST\pi$ were not changed by the treatment with 3MC and DBP. $GST\pi$ was slightly induced by the treatment with 3MC and DBP.

  • PDF

염분과 저온에 대한 내성증진을 위한 GST 유전자의 과발현 (Increase of Salt and Low Temperature Tolerance by Overexpressing Glutathione S-Transferase (GST) Gene)

  • Jun Chol Kim;Il Seop Kim;Won Hee Kang
    • 생물환경조절학회지
    • /
    • 제11권3호
    • /
    • pp.139-143
    • /
    • 2002
  • 목화의 Glutathione S-Transferase(GST) cDNA를 cloning한 뒤 담배식물체에서 과발현시킨 뒤 유전자의 기능을 분석하였다. Northern blot 분석으로 목화의 GST 유전자가 성공적으로 담배식물체의 염색체에 도입된 것을 확인하였다 Type I Type II의 전사체들이 인지되었고 이 보고에서는 Type II 전사체들의 역할을 기술하였다. Type II 전사체들을 발현하는 형질전환 식물체들은 야생형 또는 비형질전환체와 비교하였을 때 약 1.5배 이상의 GST 효소활성을 나타내었다. GST 효소의 활성은 1-chloro-2,4-dinitrobenzene (CDNB)와 글루타치온을 기질로 사용하여 측정하였다. 담배식물체에서 목화 GST CDNA의 과발현은 이 유전자가 기능을 갖는 단백질로 번역이 될 수가 있다는 것을 보여준다. 형질전환된 담배 유묘를 저온($15^{\circ}C$)과 광이 있는 상태에서 키워 GST유전자의 역할에 대한 기능을 시험하였다. GST 유전자의 형질 전환체들은 대조구의 유묘들과 비교하여 보았을 때 성장이 좋았다. 소금에 대한 내성 시험에서도 효과를 보였다. 0, 50, 100, 150, and 200 mM NaCl농도에서 생장시험을 하였다. 50, 100 mM NaCl농도에서 GST 형질전환 유묘들은 성장이 대조구에 비하여 유의성을 보였으나 0, 150, 그리고 200mM의 소금농도에서는 성장의 차이를 보이지 않았다.

원숭이 간 약물대사효소 유전자 발현에 미치는 3-methylcholanthrene 영향 (Effects of 3-methylcholanthrene on the Expression of Drug Metabolizing Enzyme Genes in Monkey Liver)

  • 이경원;아사오카;신윤용
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권2호
    • /
    • pp.73-78
    • /
    • 2004
  • In order to understand the mechanism of the regulation of drug metabolizing enzyme gene expression, we have studied the induction of CYP1A1 and GST$\alpha$, $\mu$, $\pi$ enzymes in Japanese monkey and rhesus monkey after the treatment with 3-methylcholanthrene (3MC) and di-n- butyl phthalate (DBP) and bisphenol A (BPA). The levels of mRNA were measured by RT-PCR in brain, intestine and liver. In the case of adult monkey, treatment with 3MC induced CYP1A1 mRNA in liver by 10-fold. The treatment with DBP induced CYP1A1 mRNA. Effects of 3MC and DBP on GST mRNA expression was not clear. But GST$\mu$ was slightly inhibited by the treatment with 3MC and DBP. GST$\pi$ was not induced by the treatment with 3MC and DBP in liver. GST$\alpha$ was slightly induced by the treatment with 3MC and DBP in liver. In the case of fetus monkey, the basal levels of fetus CYP1A1 mRNA and GSTs mRNA were relatively low compared to adult monkey. As the age of monkey increased, the basal levels of CYP1A1 mRNA were also increased. 3MC induced the expression of CYP1A1 mRNA in liver. The levels of GST$\mu$ and GST$\alpha$ were not changed by the treatment with 3MC and DBP. GST$\pi$ was slightly induced by the treatment with 3MC and DBP.

  • PDF

Prostaglandin synthase activity of sigma- and mu-class glutathione transferases in a parasitic trematode, Clonorchis sinensis

  • Jiyoung Kim;Woon-Mok Sohn;Young-An Bae
    • Parasites, Hosts and Diseases
    • /
    • 제62권2호
    • /
    • pp.205-216
    • /
    • 2024
  • Sigma-class glutathione transferase (GST) proteins with dual GST and prostaglandin synthase (PGS) activities play a crucial role in the establishment of Clonorchis sinensis infection. Herein, we analyzed the structural and enzymatic properties of sigma-class GST (CsGST-σ) proteins to obtain insight into their antioxidant and immunomodulatory functions in comparison with mu-class GST (CsGST-µ) proteins. CsGST-σ proteins conserved characteristic structures, which had been described in mammalian hematopoietic prostaglandin D2 synthases. Recombinant forms of these CsGST-σ and CsGST-µ proteins expressed in Escherichia coli exhibited considerable degrees of GST and PGS activities with substantially different specific activities. All recombinant proteins displayed higher affinities toward prostaglandin H2 (PGS substrate; average Km of 30.7 and 3.0 ㎛ for prostaglandin D2 [PGDS] and E2 synthase [PGES], respectively) than those toward CDNB (GST substrate; average Km of 1,205.1 ㎛). Furthermore, the catalytic efficiency (Kcat/Km) of the PGDS/PGES activity was higher than that of GST activity (average Kcat/Km of 3.1, 0.7, and 7.0×10-3 s-1-1 for PGDS, PGES, and GST, respectively). Our data strongly suggest that the C. sinensis sigma- and mu-class GST proteins are deeply involved in regulating host immune responses by generating PGD2 and PGE2 in addition to their roles in general detoxification.

Glutathione S-Transferase (GST) 유전자 다형성과 항정신병약물로 유발된 하지불안증후군의 연관 연구 (Association between Antipsychotic-Induced Restless Legs Syndrome and Glutathione S-Transferase Gst-M1, Gst-T1 and Gst-P1 Gene Polymorphisms)

  • 강승걸;박영민;김린;이헌정
    • 수면정신생리
    • /
    • 제22권1호
    • /
    • pp.25-29
    • /
    • 2015
  • 목 적 : 하지불안증후군(restless legs syndrome ; RLS)의 병인은 아직 불명확하지만, 유전적 질환으로 알려져 있다. 산화스트레스는 RLS, 지연성운동장애, 파킨슨병, 뚜렛장애 등의 운동장애에서 주요한 원인 중의 하나로 생각되고 있다. 본 연구에서는 조현병환자에서 항정신병약물에 의해 유발된 RLS 증상이 산화손상의 해독효소인 glutathione S-transferase (GST) 유전자의 다형성과 연관이 있는지를 밝히고자 하였다. 방 법 : International Restless Legs Syndrome Study Group의 진단기준으로 190명의 한국인 조현병 환자들을 대상으로 RLS에 대해서 평가하였다. 유전자형분석은 중합효소연쇄반응기법을 사용하여 GST-M1, GST-T1, GST-P1의 세 가지 단일염기다형성(single nucleotide polymorphism, SNP)에 대해서 시행되었다. 결 과 : RLS 증상군 96명과 무증상군 94명으로 피험자들을 분류하였다. GST-M1 (${\chi}^2=3.56$, p = 0.059), GST-T1 (${\chi}^2=0.51$, p = 0.476), GST-P1 (${\chi}^2=0.57$, p = 0.821)의 유전자형 빈도에 두 군간에 통계적으로 유의한 차이가 없었다. 유전자형에 따른 RLS 척도의 점수도 GST-M1 (t = -1.54, p = 0.125), GST-T1 (t = -0.02, p = 0.985), GST-P1 (F = 0.58, p = 0.560)의 세 가지 SNP에서 통계적으로 유의한 차이를 보이지 않았다. 결 론 : 본 연구의 결과 GST 유전자 다형성이 항정신병약물로 유발된 RLS 증상 발생의 민감성을 증가시킨다는 증거는 발견할 수 없었다. 산화손상과 관련된 다른 후보 유전자들에 대한 향후 연구가 필요할 것으로 사료된다.

북방전복 (Haliotis discus hannai)에서 분리한 Glutathione S-transferase 유전자의 분자생물학적 고찰 및 발현분석 (Molecular Characterization and Expression Analysis of a Glutathione S-Transferase cDNA from Abalone (Haliotis discus hannai))

  • 문지영;박은희;공희정;김동균;김영옥;김우진;안철민;남보혜
    • 한국패류학회지
    • /
    • 제30권4호
    • /
    • pp.399-408
    • /
    • 2014
  • 본 연구에서는 북방전복 (Haliotis discus hannai)의 대용량 염기서열 분석을 통해 GST유전자의 전장 cDNA를 동정하였다. 북방전복 GST 유전자의 총 길이는 1669 bp로 672 bp의 ORF는 총 223개의 아미노산을 코딩하고 있으며 등전점은 5.69, 분자량은 25.8 kDa으로 예측되었다. 북방전복 GST아미노산 서열은 둥근전복과 지중해 담치와 같은 패류의 GSTA와 가장 유사성이 높았으며 계통수 분석을 통해 GSTA와 하나의 그룹을 이루었다. 북방전복 GST에는 GSTA의 특징을 갖는 두 site (N-말단의 G-site, C-말단의 H-site)가 보존되어 있었고 효소활성과 구조 유지에 중요한 잔기가 종간에 매우 보존되어 있었다. 북방전복 GST 유전자의 mRNA는 관찰된 모든 조직에서 발현하고 있었으며, 특히 외투막, 아가미, 간췌장, 소화관에서 높은 발현이 확인되었다. 북방전복의 GST는 비브리오균을 인위감염 시킨 전복의 간췌장에서 감염 후 1시간 뒤 발현이 급격히 증가했다가 3시간까지 증가한 뒤 감소하였고, 혈구세포에서는 감염 3시간 경과 후 발현 정도가 최고로 증가했다가 감소하였다. 따라서 북방전복 GST는 alpha class GST의 특징을 가지며 병원체 감염에 따른 면역반응 조절에 관여할 것이라 생각되며 병원균 감염에 따른 바이오마커로 활용가능 할 것이라 예상된다.

Expression in Escherichia coli, Purification, and Characterization of the Tobacco Sulfonylurea Herbicide-Resistant Recombinant Acetolactate Synthase and Its Interaction with the Triazolopyrimidine Herbicides

  • Kil, Mee-Wha;Chang, Soo-Ik
    • BMB Reports
    • /
    • 제31권3호
    • /
    • pp.287-295
    • /
    • 1998
  • Acetolactate synthase (ALS) is the first common enzyme in the biosynthesis of L-Ieucine, L-isoleucine, and L-valine. The sulfonylurea-resistant ALS gene from Nicotiana tabacum was cloned into the bacterial expression vector pGEX-2T. The resulting recombinant plasmid pGEX-ALS3 was used to transform Escherichia coli strain XL1-Blue, and the mutant tobacco ALS (mALS) was expressed in the bacteria as a protein fused with glutathione S-transferase (GST). The fusion product GST-mALS was purified in a single step on a glutathione-Sepharose column. ALS activities of 0.9-2.5 ${\mu}mol/min/mg$ protein were observed in the GST-mALS, and the Km values for pyruvate, FAD, and TPP were 10.8-24.1, $(1.9-8.9){\times}10^{-3}$, and 0.14-0.38 mM, respectively. The purified GST-mALS was resistant to both the sulfonylurea and the triazolopyrimidine herbicides, and lost its sensitivity to end products, L-valine and L-leucine. For comparision, the tobacco wild-type recombinant ALS fused with GST, GST-wALS, was also characterized with respect to its pyruvate and cofactor bindings. These results suggest that the purified mutant recombinant tobacco ALS was functionally active, that the mutations resulting in herbicide resistance has affected pyruvate and cofactor bindings," and that the two classes of herbicides interact at a common site on the plant ALS.

  • PDF

Comparison of Glutathione S-transferase-${\pi}$ Content in Drug-resistant and -sensitive Cancer Cells

  • Hong, Soon-Duck;Lee, Sang-Han
    • Journal of Life Science
    • /
    • 제9권1호
    • /
    • pp.40-44
    • /
    • 1999
  • Glutathione S-transferase (GST) is a multifunctional protein that catalyzes the catalyzes the conjugation of glutathione with electrophilic compounds. It exists in a variety of isoenzy-matic froms with a wide range of substrate specificity and plays a pivotal role in detoxification of various drugs. In order to elucidate the GST-${\pi}$'s involvement of multidrug resistance (MDR) in drug-resistant tumor cell lines, we determined GST-${\pi}$ content by "1 step sandwich method". Consequently, adriamycin resistant cells of MCF-7 (MCF-7/ADM) have 7-fold increase of GST-${\pi}$ content than that of MCF-7 cells, while its {TEX}$IC_{50}${/TEX} was 116-fold greater than parent cell line. By northrn blotting, we compared whether MCF-7/ADM cells express GST-${\pi}$ mRNA. The GST-${\pi}$ mRNA expression in these cells was not inducible, but constitutive when treated for 24 h with a concentration of 0, 20, 200, and 2000 nM of adriamycin, respectively. Taken together, these results suggest that GST-${\pi}$ may not be directly associated with multidrug resistance in these human cancer cell lines.ell lines.

  • PDF

Overexpression of Cotton Glutathione S-Transferase (GST) cDNA and Increase of low Temperature and Salt Tolerance in Plants

  • Kang, Won-Hee;Jong Hwa kim;Lim, Jung-Dae;Yu, Chang-Yeon
    • Journal of Plant Biotechnology
    • /
    • 제4권3호
    • /
    • pp.117-122
    • /
    • 2002
  • Cotton Glutathione S-Transferase(GST: EC 2.5.1.18) was cloned and Gh-5 cDNA was overexpressed in tobacco (Nicotiana tabacum) plants. The transformation of cotton GST in tobacco plant was confirmed by northern blot analysis. Type I and Type II transcript patterns were identified in Gh-5 transgenic tobacco plants. Type I transcripts was only discussed in this paper. Glutathione and 1-chloro-2,4-dinitrobenzene (CDNB) were used as the substrates, and the activity of GST in the type I transgenic plants was about 2.5-fold higher than the non-expressers and wild type tobacco plants. The expression of cotton GST in tobacco plants proved that Gh-5 could be translated into functional protein. Type I transgenic plants produced functional GST in the cells. Type I showed higher GST specific activity than Type II in the transgenic plants. Control and transgenic seedlings were grown in the growth chamber and under the light at 15$^{\circ}C$, and the effects of cotton GST in the seedlings was evaluated. The growth rate of Gh-5 overexpressors was better than the control and non-transgenic tobacco plants. Salinity tolerance was also analyzed on the seeds of transgenic plants. Seeds of Gh-5 overexpressors and the wild type tobacco seedlings were germinated and grown at 0, 50, 100, 150, and 200 mM NaCl solution. Gh-5 transgenic seedlings showed higher growth rate over control seedlings at both 50 and 100 mM NaCl solution. But at 0, 150, and 200 mM NaCl concentration, the difference in growth rate was not detected.

가미사물탕(GST)의 사이토카인으로 유도된 인간 섬유아세포양 활막 세포 활성화 저해 작용 (Suppressive Effects of GST on Cytokine-induced Activation of Human Fibroblast-like Sinoviocytes)

  • 박지영;진미림;김동희
    • 혜화의학회지
    • /
    • 제14권2호
    • /
    • pp.45-54
    • /
    • 2005
  • GST, an extract from 16 herbs, has been formulated and prescribed for the treatment of human rheumatoid arthritis(hRA) for many years. The present study was done to investigate whether GST has suppressive effects on activation of fibroblast-like sinoviocytes isolated from an RA patient. In tumor necrosis factor-a(TNF-a)/interleukin-1b(IL-1b) treated human sinoviocytes, The mRNA expression of molecular indicators related to pathologic changes of the sinoviocytes were examined using quantitative real-time PCR. The treatment of GST($100\;{\mu}g/ml$) suppressed the expression of proinflammatory cytokines and chemokines such as TNF-a, IL-1b, IL-6 and IL-8 compared with the control. The mRNA level of intracellular adhesion molecule-1(ICAM-1) which is known to increase in the activated sinoviocytes of RA patients, was slightly decreased by GST. The expression of NOS-II was considerably reduced, which was accompanied by a decrease in the production of nitric oxide(NO). In addition, GST considerably increased the mRNA levels of tissue inhibitors of matrix metalloproteinase-1(TIMP-1), while those of matrix metalloproteinase-3(MMP-3) were decreased. Taken together, these data suggested that GST might suppress the activation of sinoviocytes in hRA.

  • PDF