• Title/Summary/Keyword: GSHP System

Search Result 108, Processing Time 0.026 seconds

A Study on the GSHP System for Domestic application(I) (GSHP 시스템의 국내적용성에 관한 연구(I))

  • 백성권;안형준;박영진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.439-444
    • /
    • 2002
  • Geothermal or ground source heat pumps(GSHPs) are electrically powered systems that take advantage of the earth's relatively constant temperature to provide heating, cooling, and hot water for homes and commercial buildings. The buried pipe, or ground loop, is the most recent technical advance in heat pump technology. The idea to bury pipe in the ground to gather heat energy began in the 1940s. Only recently, however, have new heat pump designs and improved buried pipe materials been combined to make GHP systems the most efficient heating and cooling systems available. The aim of the study is application of the GSHP system in korea. Our environments for economy, politics and society are different from other countries. For a case, the progressive tax rate of home electricity is represented.

  • PDF

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (1))

  • Ryozo, Ooka;Nam, Yu-Jin;Kentaro, Sekine;Mutsumi, Yokoi;Yoshiro, Shiba;Hwang, Suck-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.148-154
    • /
    • 2005
  • Ground-source (Geothermal) heat pump (GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump (ASHP) systems. However, GSHP systems are not widespread in Japan because of their expensive boring costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial boring cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a foil-scale experiment. As a result, the average values for heat rejection were 186${\sim}$201 W/m (for pile, 25 W/m per Pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems. The initial cost of construction per unit for heat extraction and rejection is ${\yen}$72/W for this system, whereas it is f300/W for existing standard borehole systems.

  • PDF

Investigation and Analysis on the present state of Geothermal Source Heat Pump System Applied in Korea (지열히트펌프 시스템의 국내 적용현황 조사 및 분석)

  • Choi, Mi-Young;Ko, Myeong-Jin;Kim, Yong-Shik;Park, Jin-Chul;Rhee, Eon-Ku
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.267-272
    • /
    • 2009
  • This study aims to investigate and analyze the present state of ground source heat pump(GSHP) system applied in Korea. It is based on the statistic from the New and Renewable Energy Center in Korea and construction results of the professional companies registered to the center. The research items were installed area, installed year, building use, ground heat exchange type and heat exchanger type of the pump. According to the result of investigation, the using GSHP system have been increasing steadily as the space heating and cooling system in a building. The capacity of this system is also becoming lager based on technical and economical feasibility analysis about the system since GSHP system first introduced in 2000.

Cooling and Heating Performance Under the Actual Operating Condition of a Ground Source Heat Pump System in a School Building (학교 건물에 설치된 지열원 열펌프 시스템의 실사용을 통한 냉난방성능 연구)

  • Kim, Eui-Young;Jeong, Young-Man;Song, Jae-Do;Lee, Jae-Keun;Kim, In-Kyu;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.586-589
    • /
    • 2009
  • This paper presents the performance of a water-to-refrigerant type ground source heat pump (GSHP) system installed in a school building in Korea. For analyzing the performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the input power of the GSHP system. The average cooling coefficient of performance (COP) of the heat pump was found to be 8.5 at 60% partial load condition, while the overall system COP was found to be 5.9. The average heating COP of the heat pump was found to be 6.5 at 45% partial load condition, while the overall system COP was found to be 5.0.

  • PDF

A Study on Development of a Ground-Source Heat Pump System Utilizing Cast-in-place Concrete Pile Foundation of a Building (현장타설형 건물 기초를 이용한 지중열 공조시스템의 성능평가에 관한 연구)

  • Hwang, Suck-Ho;Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.641-647
    • /
    • 2010
  • Ground-source(Geothermal) heat pump(GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump(ASHP) systems. However, GSHP systems are not widespread because of their expensive installation costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a full-scale experiment. As a result, the average values for heat rejection were 186~201 W/m(per pile, 25 W/m per pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems.

Cooling and Heating Performance Evaluation of a GSHP System (지열원 열펌프 시스템의 냉${\cdot}$난방 성능 평가)

  • Sohn Byong Hu;Cho Chung-Sik;Shin Hyun-Jun;An Hyung-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.71-81
    • /
    • 2005
  • The main objective of the present study is to investigate the performance characteristics of a ground-source heat pump(GSHP) system with a 130 m vertical and 62 mm nominal diameter U-tube ground heat exchanger. In order to evaluate the performance analysis, the ground-source heat pump connected to a test room with $90\;m^2$ floor area in the Korea Institute of Construction $Technology(37^{\circ}39'N,\;126^{\circ}48'E)$ was designed and constructed. This ground-source heat pump system mainly consisted of ground heat exchanger, indoor heat pumps and measuring devices. The cooling and heating loads of the test room were 5.5 and 7.2 kW at design conditions, respectively. The experimental results were obtained from July 2, 2003 to July 1, 2004. The cooling and heating performance coefficients of the system were determined from the measured data. The average cooling and heating COPs for the system were obtained to be 4.90 and 3.96, respectively. The temperature variations in ground and the ground heat exchanger pipe surface at different depths were also measured.

Cooling and Heating Performance Evaluation of a Ground Source Heat Pump (지열원 열펌프의 냉.난방 성능 평가)

  • Sohn, Byong-Hu;Cho, Chung-Sik;Shin, Hyun-Joon;An, Hyung-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2117-2122
    • /
    • 2004
  • The main objective of the present study is to investigate the performance characteristics of a ground source heat pump (GSHP) system with a 130 m vertical 60.5 mm nominal diameter U-bend ground heat exchanger. In order to evaluate the performance analysis, the GSHP system connected to a test room with 90 $m^2$ floor area in the Korea Institute of Construction Technology ($37^{\circ}39'$ N, $126^{\circ}48'$ E) was designed and constructed. This GSHP system mainly consisted of ground heat exchanger, indoor heat pump and measuring devices. The cooling and heating loads of the test room were 5.5 and 7.2 kW at design conditions, respectively. The experimental results were obtained from July to January in cooling and heating season of $2003{\sim}2004$. The cooling and heating performance coefficients of the system were determined from the experimental results. The average cooling and heating COPs for the system were obtained to be 4.82 and 3.02, respectively. The temperature variations in ground and the ground heat exchanger surface at different depths were also measured.

  • PDF

A Study on the Horizontal Ground Source Beat Pump Greenhouse Heating System with Thermal Storage Tank (축열조를 채용한 수평형 지열원 히트펌프 온실 난방 시스템에 관한 연구)

  • Park, Yong-Jung;Kim, Kyoung-Hoon
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.194-201
    • /
    • 2006
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump (GSHP) systems are recognized to be outstanding heating and cooling systems. A horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated the performance characteristics. The reasons for using thermal storage tank were discussed in detail. Thermal storage tank can provide heat for heating load that is larger than GSHP system heating capacity. The results of study showed that the heating coefficient of performance of the heat pump system was 2.69.

A Study on the Optimal Energy Mix Model in Buildings with OEMGD Algorithm Focusing on Ground Source Heat Pump and District Heating & Cooling System (OEMGD 알고리즘을 이용한 건물 냉난방용 최적 에너지 믹스 모델에 관한 연구 - 지열히트펌프와 지역냉난방 시스템을 중심으로)

  • Lee, Key Chang;Hong, Jun Hee;Lee, Kyu Keon
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • This study was conducted to promote consumer interest in Geothermal Heat Pump (Ground Source Heat Pump, GSHP) and district heating and cooling (District Heating & Cooling, DHC) systems, which are competing with each other in the heating and cooling field. Considering not only the required cost data of energy itself, but also external influence factors, the optimal mix ratio of these two energy systems was studied as follows. The quantitative data of the two energy systems was entered into a database and the non-quantitative factors of external influence were applied in the form of coefficients. Considering both of these factors, the optimal mix ratio of GSHP and DHC systems and minimum Life Cycle Cost (LCC) were obtained using an algorithm model design. The Optimal Energy Mix of GSHP & DHC (OEMGD) algorithm was developed using a software program (Octave 4.0). The numerical result was able to reflect the variety of external influence factors through the OEMGD algorithm. The OEMGD model found that the DHC system is more economical than the GSHP system and was able to represent the optimal energy mix ratio and LCC of mixed energy systems according to changes in the external influences. The OEMGD algorithm could be of help to improve the consumers' experience and rationalize their energy usage.

Analytical Study on the Optimal Operating Control of A Hybrid Geothermal Plant (지열복합 열원가기 최적운전채어에 관한 해석적 연구)

  • Jeon, Jong-Ug;Park, Jong-Sam;Myung, Woo-Ho;Kim, Young-Ki;Kim, Yong-Chan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • The objective of this study is to find the optimal control algorithm of a hybrid Plant, which is combined by renewable energy plant of the GSHP(Geothermal Source Heat Pump) and the normal plant (Chiller, boiler). The work presented in this study was carried out in the EnergyPlus(Version 2.0). The EnergyPlus was modified in order to simulate the hybrid plant. The plant system was controlled by the load-range-based operation in which schemes select a user specified set of equipment for each user specified range of a particular simulation condition. In the use of the load-range-based operation, four kind of control cases were defined and simulated in order to obtain the optimal control algorithm of the hybrid plant. The result showed that the Case 2 was the optimal control algorithm which used the GSHP as a base operating plant and the normal plant as an assistant operating plant. Even though the normal plant was operated in full load and the renewable energy plant of the GSHP was operated in partial load, the annual energy consumption of the normal plant was larger than that of the GSHP plant.