• 제목/요약/키워드: GSHP

검색결과 123건 처리시간 0.026초

지열원 열펌프 시스템의 냉${\cdot}$난방 성능 평가 (Cooling and Heating Performance Evaluation of a GSHP System)

  • 손병후;조정식;신현준;안형준
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.71-81
    • /
    • 2005
  • The main objective of the present study is to investigate the performance characteristics of a ground-source heat pump(GSHP) system with a 130 m vertical and 62 mm nominal diameter U-tube ground heat exchanger. In order to evaluate the performance analysis, the ground-source heat pump connected to a test room with $90\;m^2$ floor area in the Korea Institute of Construction $Technology(37^{\circ}39'N,\;126^{\circ}48'E)$ was designed and constructed. This ground-source heat pump system mainly consisted of ground heat exchanger, indoor heat pumps and measuring devices. The cooling and heating loads of the test room were 5.5 and 7.2 kW at design conditions, respectively. The experimental results were obtained from July 2, 2003 to July 1, 2004. The cooling and heating performance coefficients of the system were determined from the measured data. The average cooling and heating COPs for the system were obtained to be 4.90 and 3.96, respectively. The temperature variations in ground and the ground heat exchanger pipe surface at different depths were also measured.

Feasibility Study of High-Efficiency Ground Heat Exchanger using Double U-tube through a Real-Scale Experiment

  • Bae, Sangmu;Kim, Jaemin;Nam, Yujin
    • KIEAE Journal
    • /
    • 제17권4호
    • /
    • pp.33-39
    • /
    • 2017
  • Purpose: The use of renewable energy system is essential for building energy independence and saving energy consumption in the building sector. Among renewable energy technologies, ground source heat pump(GSHP) system is more energy-efficient and environmental-friendly than other heat source systems due to utilize stable ground heat source. However, the GSHP system requires a high initial installation cost and installation space in limited urban area, so it is difficult to have superiority in the market of heat source system. Therefore, it is necessary to develop the installation method of low-cost and improve system performance. This paper aims to evaluate the performance of double u-tube ground heat exchanger(GHX) and verify system feasibility through real-scale experiment. Method: In this study, the real-scale experiment of vertical closed-type GSHP system was conducted using double u-tube GHX and high-efficiency grout. Through the verification experiment, heat source temperature, heat exchange rate(HER) and seasonal performance factor(SPF) were measured according to the long-term operation. In addition, the feasibility analysis was conducted comparing to the single u-tube system. Result: In the results of experiment, average HER was 136.27 W/m and average SPF was 5.41. Furthermore, compared to the single u-tube, the installation cost of the developed system could be reduced about 70% in the same heating load condition.

학교 건물에 설치된 지열원 열펌프 시스템의 실사용을 통한 냉난방성능 연구 (Cooling and Heating Performance Under the Actual Operating Condition of a Ground Source Heat Pump System in a School Building)

  • 김의영;정영만;송재도;이재근;김인규;이동혁
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.586-589
    • /
    • 2009
  • This paper presents the performance of a water-to-refrigerant type ground source heat pump (GSHP) system installed in a school building in Korea. For analyzing the performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the input power of the GSHP system. The average cooling coefficient of performance (COP) of the heat pump was found to be 8.5 at 60% partial load condition, while the overall system COP was found to be 5.9. The average heating COP of the heat pump was found to be 6.5 at 45% partial load condition, while the overall system COP was found to be 5.0.

  • PDF

수치해석을 통한 저심도 유닛형 지중열교환기의 성능 검토 (Performance Analysis of a Low-Depth Unit-Type Ground Heat Exchanger using Numerical Simulation)

  • 오진환;서장후;남유진
    • 설비공학논문집
    • /
    • 제27권3호
    • /
    • pp.169-173
    • /
    • 2015
  • Recently, ground source heat pump (GSHP) systems have attracted much attention, according to the enhanced social demand of renewable energy. GSHP systems can achieve higher coefficient of performance than the conventional air-source heat pump systems by utilizing stable underground temperature. However, the initial cost of GSHP system is higher than that of the conventional systems, especially, in the small-size buildings. Therefore, it is necessary to develop small-size ground heat exchanger with low cost and quick installation. In this study, a unit-type ground heat exchanger was developed and heat exchange rate was calculated by the numerical simulation. As a result, 27.45 W/m of heat exchange rate was acquired in the condition of $0.5m{\times}0.2m{\times}2m$ unit.

건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (1) (A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building)

  • 오오카 료죠;남유진;세키네 켄타로;요코이 무츠미;시바 요시로;황석호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.148-154
    • /
    • 2005
  • Ground-source (Geothermal) heat pump (GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump (ASHP) systems. However, GSHP systems are not widespread in Japan because of their expensive boring costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial boring cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a foil-scale experiment. As a result, the average values for heat rejection were 186${\sim}$201 W/m (for pile, 25 W/m per Pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems. The initial cost of construction per unit for heat extraction and rejection is ${\yen}$72/W for this system, whereas it is f300/W for existing standard borehole systems.

  • PDF

지열히트펌프 시스템의 국내 적용현황 조사 및 분석 (Investigation and Analysis on the present state of Geothermal Source Heat Pump System Applied in Korea)

  • 최미영;고명진;김용식;박진철;이언구
    • 설비공학논문집
    • /
    • 제21권5호
    • /
    • pp.267-272
    • /
    • 2009
  • This study aims to investigate and analyze the present state of ground source heat pump(GSHP) system applied in Korea. It is based on the statistic from the New and Renewable Energy Center in Korea and construction results of the professional companies registered to the center. The research items were installed area, installed year, building use, ground heat exchange type and heat exchanger type of the pump. According to the result of investigation, the using GSHP system have been increasing steadily as the space heating and cooling system in a building. The capacity of this system is also becoming lager based on technical and economical feasibility analysis about the system since GSHP system first introduced in 2000.

지열원 열펌프의 냉.난방 성능 평가 (Cooling and Heating Performance Evaluation of a Ground Source Heat Pump)

  • 손병후;조정식;신현준;안형준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2117-2122
    • /
    • 2004
  • The main objective of the present study is to investigate the performance characteristics of a ground source heat pump (GSHP) system with a 130 m vertical 60.5 mm nominal diameter U-bend ground heat exchanger. In order to evaluate the performance analysis, the GSHP system connected to a test room with 90 $m^2$ floor area in the Korea Institute of Construction Technology ($37^{\circ}39'$ N, $126^{\circ}48'$ E) was designed and constructed. This GSHP system mainly consisted of ground heat exchanger, indoor heat pump and measuring devices. The cooling and heating loads of the test room were 5.5 and 7.2 kW at design conditions, respectively. The experimental results were obtained from July to January in cooling and heating season of $2003{\sim}2004$. The cooling and heating performance coefficients of the system were determined from the experimental results. The average cooling and heating COPs for the system were obtained to be 4.82 and 3.02, respectively. The temperature variations in ground and the ground heat exchanger surface at different depths were also measured.

  • PDF

복합열원설비 운전온도 최적 설정에 관한 해석적 연구 (An Analytical Study on the Optimal Set-point of the Hybrid Plant)

  • 전종욱;이선일;이태원;김용기;홍대희;김용찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.352-357
    • /
    • 2007
  • The objective of this study is to find the optimal set-point of a hybrid Plant, which is combined by renewable energy plant of the GSHP(Ground Source Heat Pump) and the conventional plant(chiller, boiler). The work presented in this study was carried out by using the EnergyPlus(Version 2.0). In order to validate the simulation model, field data were measured from a building. The GSHP was used as a base plant and the conventional plant as the assistant plant. Various temperatures were controlled (zone summer set-point, zone winter set-point, chilled water temperature, hot water temperature) to find the optimal set-point temperature of the system. The influence of the various set-points were analyzed seasonally.

  • PDF

이중 축열조를 갖는 축열식 지열원 히트펌프시스템의 노인공동주택 적용 분석연구 (Application analysis to a shared apartment house of heat storage type GSHP system with dual storage tank)

  • 박종우;이상훈;조성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.27-32
    • /
    • 2008
  • The present study has been conducted economic analysis of heat storage type ground source heat pump system(HSGSHP) and normal ground source heat pump (GSHP) which are installed at the same building in the shared an apartment house. Cost items, such as initial cost, annual energy cost and maintenance cost of each system are considered to analyze life cycle cost (LCC) and simple payback period (SPP) with initial cost different are compared. The initial cost is a rule to the Government basic unit cost of production. LCC applied present value method is used to assess economical profit of both of them. Variables used to LCC analysis are prices escalation rate and interest rate mean values of during latest 10 years. The LCC result shows that HSGSHP (1,050,910,000won) is more profitable than GSHP by 68.9% initial cost. And SPP appeared 3.0 year overcome the different initial cost by different annual energy cost.

  • PDF

현장타설형 건물 기초를 이용한 지중열 공조시스템의 성능평가에 관한 연구 (A Study on Development of a Ground-Source Heat Pump System Utilizing Cast-in-place Concrete Pile Foundation of a Building)

  • 황석호;남유진
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.641-647
    • /
    • 2010
  • Ground-source(Geothermal) heat pump(GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump(ASHP) systems. However, GSHP systems are not widespread because of their expensive installation costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a full-scale experiment. As a result, the average values for heat rejection were 186~201 W/m(per pile, 25 W/m per pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems.