• Title/Summary/Keyword: GSH peroxidase

Search Result 404, Processing Time 0.023 seconds

Production of Exo-polysaccharide from Submerged Culture of Grifola frondosa and Its Antioxidant Activity

  • Lee, Keyong-Ho;Yoon, Won-Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1253-1257
    • /
    • 2009
  • Exo-polysaccharide isolated from the culture of Grifola frondosa was modified by sodium periodate ($NaIO_4$) and sodium chlorite ($NaClO_2$) to delete polysaccharide part and phenolic compound, respectively, and was investigated what effect has each part of exo-polysaccharide against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in porcine kidney epithelial cells (LLC-PK1). Oxidative stress on LLC-PK1 cell was measured by cell viability, lipid peroxidation, superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) activity. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in significant decrease in cell viability, SOD, and GSH-px action, and significant increase in lipid peroxidation. The treatment of exo-polysaccharide and $NaIO_4$ modified sample protected LLC-PK1 cells from AAPH-induced cell damage such as cell viability, lipid peroxidation, SOD, and GSH-px activity in a dose dependant manner (10, 100, and $500{\mu}g/mL$). However, the treatment of $NaClO_2$ modified sample did not affect for cell viability, lipid peroxidation, SOD, and GSH-px activity. The antioxidant activity of exo-polysaccharide was significantly decreased on AAPH-induced LLC-PK1 cell system when phenolic compound was deleted. The antioxidant activity was significantly correlated with the content of phenolic compound of exo-polysaccharide.

Effects of Circii Herba Aqua-Acupuncture (BL18, CV12) on Acute Oxidative Liver Injury (간유(肝兪).중완(中脘)의 대계(大?) 약침(藥鍼)이 급성 산화적 간손상에 미치는 효과)

  • Lee Jeong-Joo;Moon Jin-Young
    • Korean Journal of Acupuncture
    • /
    • v.20 no.4
    • /
    • pp.41-52
    • /
    • 2003
  • Objectives : Circii Herba has been used as a natural drug for the treatment of stress digestive system disease. The aim of this study is to investigate the role of Circii Herba aqua-acupuncture solution (CHAS) in experimental oxidative liver injury. Methods : In order to investigate the effects of CHAS on acute liver injury, male ICR mice were pretreated with CHAS(0.2 ml/mouse/day) at the loci of BL18 and CV12 for 6days, starved for 24hrs, and administerated acetaminophen(500 mg/kg, i.p.). After acetaminophen administeration, mice were sacrificed, and the liver was removed, rinsed with ice-cold $1.15{\%}$ KCI buffer, and homogenized at $4^{\circ}C$. Fractions(fraction Ⅰ, Ⅱ, Ⅲ) were isolated by differential centrifugation. Lipidperoxide, total SH, and glutathione(GSH) levels were measured in the Fraction Ⅰ. In addition, activities of hepatic enzyme, such as catalase, glutathione peroxidase(GSH-Px) were measured in the Fraction Ⅱ, and glutathione S-transferase(GST) was measured in the Fraction Ⅲ. Results : In vivo treatment of CHAS(BL18 and CV12) showed effective inhibition of acetaminophen induced lipid peroxidation, and showed elevations of total SH, GSH level, catalase, GSH-Px, GST activities. Conclusions : These results suggested that CHAS might suppress the formation of oxidative metabolites, and prevent acetaminophen induced hepatotoxicity.

  • PDF

Up-Regulation of Glutathione Biosynthesis in NIH3T3 Cells Transformed with the ETV6-NTRK3 Gene Fusion

  • Kim, Su-Jung;Kim, Hong-Gyum;Lim, Hye-Won;Park, Eun-Hee;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.131-136
    • /
    • 2005
  • The ETV6-NTRK3 gene fusion, first identified in the chromosomal translocation in congenital fibrosarcoma, encodes a chimeric protein tyrosine kinase with potent transforming activity. ETV6-NTRK3-dependent transformation involves the joint action of NTRK3 signaling pathways, and aberrant cell cycle progression resulting from activation of Mek1 and Akt. The level of glutathione (GSH) was found to be markedly increased in ETV6-NTRK3-transformed NIH3T3 cells. The activities of the two GSH biosynthetic enzymes as well as of glutathione peroxidase, together with their mRNAs, were also higher in the transformed cells. The transformed cells were able to grow in the presence of GSH-depleting agents, whereas the control cells were not. L-Buthionine-(S,R)-sulfoximine (BSO) inhibited activation of Mek1 and Akt in the transformed NIH3T3 cells. These observations imply that up-regulation of GSH biosynthesis plays a central role in ETV6-NTRK3-induced transformation.

Biochemical characterization of Haemophilus Influenzae TPx-GRX (Haemophilus Influenzae TPx-GRX의 생화학적 특성연구)

  • Lee, Dong-Suk;Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.14 no.1
    • /
    • pp.7-24
    • /
    • 2004
  • We found new type of thiol peroxidase, fused with GRX.(TPx-GRX) The TPx-GRX exists in pathogenic bacteria including -. This protein was homogeneously purified from the E.coli recombinant overexpressing TPx-GRX. In the presence of a thiol-containing electron donor such as DTT, the purified TPx-GRX has potent the antioxidant to prevent the inactivation of GS by the MCO system, which is comprised of DTT, $Fe^{3+}$, and $O^2$. The antioxidant activity is much higher that other thiol peroxidase. The investigate the peroxidase activity of TPx-GRX, we directly measured the peroxidase activity of TPx-GRX toward peroxides in terms of the removal of peroxides in the presence of GSH. This result demonstrates that the peroxidase activity of TPx-GRX. These taken together results suggest that TPx-GRX is a new member of thiol peroxidase. These observations also suggest that in the pathogenic bacteria, TPx-GRX plays an important antioxidative role as a multiple array defence mechanism against oxidative stress.

  • PDF

Effects of Oral Taurine Supplementation on Blood Antioxiant Enzyme Activities and Lipid Peroxidation in Healthy Female Adults (타우린보강이 건강한 성인영성의 혈중 항산화효소 활성과 지질과산화물 농도에 미치는 영향)

  • 정은정
    • Journal of Nutrition and Health
    • /
    • v.33 no.7
    • /
    • pp.745-754
    • /
    • 2000
  • Effects of oral taurine supplementation (6g/day)for 2-4 weeks on activities of red blood cell(RBC)total superoxide dismutase (SOD) and plasma glutathione peroxidase(GSH-Px) and the level of malondialdehyde(MDA) were evaluated in healthy female adults (23.6$\pm$0.3 years old). Compared to the value for 0 week plasma GSH-Px activity of the subjects was significantly lower after 2 weeks of taurine supplementation(p<0.05) and recovered to the value similar to 0 week after 4 weeks of taurine supplementation. RBC total SOD activity tended to be decreased after 2 weeks of taurine supplmentation compared to the values for 0 week although the difference between the means of the two group was not statistically significant. Plasma MDA level was not significantly decreased by taurine supplementation most probably due to the fact that the subjects participated in the present study were healthy and their antioxidant defense system had been in the 'normal' range. Plasma MDA concentration was negatively correlated with plasma taurine concentration(r=-0.2003m p<0.05) but tended to be positively correlated with plasma cholesterol concentration(r=0.2465, p=0.0645) as expected Plasma GSH-Px activity was positively associated with the percentage of 22:0 (r=0.2892, p<0.05) or 20:4w6(r=0.2939, p<0.05). On the other hand plasma MDA concentration was positively correlated with the percentage of 20:5w3 in plasma total lipids(r=0.2635 p<0.05) and negatively correlated with $\Delta$5 desaturation index of w6 fatty acids(20:3w6⇒20:4w6) in plamsa total lipids(r=-0.2714, p<0.05) as well as in phospholipids(r=-0.2864, p<0.05). From these results protective effect of taurine supplementation against lipid peroxidation and antioxidant defense system in humans appears to be minimal when the subjects are in a relatively healthy state. Further studies concerning the antioxidant efficacy of taurine should be conducted in human subjects under various disease states related to oxidative stress such as diabetes and artheroxclerosis.

  • PDF

Thermal effects on antioxidant enzymes response in Tilapia, Oreochromis niloticus exposed Arsenic (Arsenic에 노출된 틸라피아, Oreochromis niloticus의 항산화 효소반응에 미치는 수온의 영향)

  • Min, EunYoung;Jeong, Ji Won;Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.27 no.2
    • /
    • pp.115-125
    • /
    • 2014
  • The effects of waterborne arsenic (As) exposure on antioxidant defense were studied in liver and gills of tilapia, Oreochromis niloticus under thermal stress. Tilapia were exposed to different As concentrations (0, 200 and $400{\mu}g/L$) at three water-temperatures (WT; 20, 25 and $30^{\circ}C$) for 10 days. In antioxidant response, glutathione (GSH) levels, glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-treansferase (GST) activities were significantly decreased depend on WT in the gills after As exposure. Also, the range of fluctuation in these enzymes activities was most significantly increased at $30^{\circ}C$ in the liver of tilapia exposed to As. The present findings suggest that a simultaneous stress by temperature change and As exposure could accelerate the alteration in antioxidant enzymes activities of tilapia.

Purification and Physicochemical Characterization of a Recombinant Phospholipid Hydroperoxide Glutathione Peroxidase from Oryza sativa

  • Wang, Zebin;Wang, Feng;Duan, Rui;Liu, Jin-Yuan
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.412-418
    • /
    • 2007
  • Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an unique antioxidant enzyme that directly reduces lipid hydroperoxides in biomembranes. In the present work, the entire encoding region for Oryza sativa PHGPx was expressed in Escherichia coli M15, and the purified fusion protein showed a single band with 21.0 kD and pI = 8.5 on SDS- and IFE-PAGE, respectively. Judging from CD and fluorescence spectroscopy, this protein is considered to have a well-ordered structure with 12.2% $\alpha$-helix, 30.7%$\beta$-sheet, 18.5% $\delta$-turn, and 38.5% random coil. The optimum pH and temperature of the enzyme activity were pH 9.3 and 27$^{\circ}C$. The enzyme exhibited the highest affinity and catalytical efficiency to phospholipid hydroperoxide employing GSH or Trx as electron donor. Moreover, the protein displayed higher GSH-dependent activity towards t-Butyl-OOH and $H_2O_2$. These results show that OsPHGPx is an enzyme with broad specificity for hydroperoxide substrates and yielded significant insight into the physicochemical properties and the dynamics of OsPHGPx.

Protective effect of Salviae-radix extraction in $H_2O_2$ induced renal cell injury ($H_2O_2$에 의한 신장(腎臟) 세포 손상에 대한 단삼(丹參) 추출물의 방지 효과)

  • Kim, Sang-Beum;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.38-48
    • /
    • 1998
  • This study was undertaken to determine whether Salviae-radix (SVR) extraction prevents the oxidant-induced cell injury and thereby exerts protective effect against oxidant-induced inhibition of tetraethylammonium uptake (TEA) in renal corticaJ sices. SVR (5%) attenuated $H_2O_2-induced$ inhibition of TEA uptake. $H_2O_2$ increased LDH release and lipid peroxidation in a dose-dependent manner. These changes were prevented by SVR extraction. The protective effect of SVR on LDH release was dose-dependent over the concentration range of 0.1-0.5%, and that on lipid peroxidation over the concentration ranges of 0.05-2%. SVR significantly prevented Hg-induced lipid peroxidation. SVR extraction (0.5%) increased cellular GSH content in normal and $H_2O_2-treated$ tissues. When slices were treated with 100 mM $H_2O_2$, catalase activity was decreased, which was prevented by 0.5% SVR extraction. The activity of glutathione peroxidase but not superoxide dismutase was significantly increased by 0.5% SVR extraction in $H_2O_2-treated$ tissuces. These results suggest that SVR has an antioxidant action and thereby exerts benefical effect against oxidant-induced impairment of membrane transport function. This effect of SVR is attributed to an increase in endogenous antioxidants such as GSH, catalase and glutathione peroxidase.

  • PDF

Effects of Dietary Supplemented Inorganic and Organic Selenium on Antioxidant Defense Systems in the Intestine, Serum, Liver and Muscle of Korean Native Goats

  • Chung, J.Y.;Kim, J.H.;Ko, Y.H.;Jang, I.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.52-59
    • /
    • 2007
  • The present study was designed to assess whether dietary inorganic and organic selenium (Se) could affect antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST), and the level of malondialdehyde (MDA), a marker of lipid peroxidation, in the intestine, serum, liver, and gastrocnemius muscle of Korean native goats. A total of eighteen Korean native goats was allotted into three dietary groups, consisting of basal diet (CON), or basal diet with either 0.25 ppm inorganic (IOSEL) or 0.25 ppm organic Se (ORSEL), and fed the corresponding diets for 5 wks. Growth performance, including body weight and total gain, and blood biochemical profiles, including GSH-Px, were not significantly different between the three dietary groups. Also, the specific activities of SOD, GSH-Px, and GST, and the level of MDA in the intestinal mucosa and liver from goats were not substantially affected by either inorganic Se or organic Se. However, goats fed the diet containing organic Se showed a significant increase in GSH-Px and GST activities in the gastrocnemius muscle compared with those fed the basal diet. In conclusion, increased muscle GSH-Px and GST activities suggest that dietary organic Se may affect, at least in part, the antioxidant defense system in muscle of Korean native goats under the conditions of our feeding regimen.

Protective Role of Selenium and High Dose Vitamin E against Cisplatin - Induced Nephrotoxicty in Rats

  • Aksoy, Asude;Karaoglu, Aziz;Akpolat, Nusret;Naziroglu, Mustafa;Ozturk, Turkan;Karagoz, Zuhal Karaca
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6877-6882
    • /
    • 2015
  • Background: Cisplatin (CDDP) is one of the most active cytotoxic agents in the treatment of cancer. We investigated the effect of selenium (Se) with high dose vitamin E (VE) administration to prevent CDDP-induced nephrotoxicity in rats. Materials and Methods: In this study, 40 female Wistar rats were randomly divided into five equal groups. The first group, which served as the control, was administered physiological saline (2.5 cc/day, 5 days) intraperitoneally (IP), while group A was administered cisplatin (6 mg/kg BW/ single dose) plus physiological saline IP. Groups B, C, D received IP five doses of Se (1.5 mg/kg BW), and a high dose of VE (1000 mg/kg BW) (Se-VE) in combination before, simultaneously, and after CDDP, respectively. The rats were sacrificed five days after CDDP administration. Plasma malondialdehide (MDA), glutathione peroxidase (GSH-Px), reduced glutathione (GSH), catalase, urea, creatinine levels, renal histopathological changes were measured. Results: The histopathological injury score, plasma levels of MDA, urea, creatinine were found to increase in group A compared to the control (p<0.05), while plasma levels of GSH-Px, GSH and catalase decreased (p<0.05). In contrast, plasma levels of MDA decreased (p<0.05) in groups B, C, D, which were treated with Se- VE, whereas levels of GSH-Px, GSH were found to increase only for group D (p<0.05). Plasma urea, creatinine levels improved in the treatment groups compared to group A (p<0.001). Histopathological changes caused by CDDP were also significantly improved after Se-VE treatment (p<0.05). Conclusions: Oxidative stress increases with CDDP-induced nephrotoxicity in rats. Se-VE supplementation might thus play a role in the prevention of CDDP-induced nephrotoxicity in patients.