• Title/Summary/Keyword: GSH peroxidase

Search Result 404, Processing Time 0.043 seconds

Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings

  • Hasanuzzaman, Mirza;Hossain, Mohammad Anwar;Fujita, Masayuki
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.353-365
    • /
    • 2011
  • The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the $H_2O_2$ and lipid peroxidation levels. Exogenous NO pretreatment of the seedlings had little influence on the nonenzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.

Studies on Selenium-fortified Functional Hanwoo-Beef by Utilizing Spent Mushroom Composts II. Effects of Spent Composts of Se-Enriched Mushrooms as the Dietary Se Source on Selenium Deposition in the Muscular Tissue and Plasma Glutathione Peroxidase Activity in the Finishing Hanwoo Steer (버섯폐배지를 이용한 셀레늄강화 기능성 한우고기 생산에 관한 연구 II. 셀레늄강화 버섯폐배지 첨가가 한우의 근육조직 내 셀레늄 축적과 혈중 glutathione peroxidase(GSH-Px)활성에 미치는 영향)

  • Kim, Wan-Young;Lee, Kee-Jong
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.116-135
    • /
    • 2004
  • This study was conducted to investigate effects of spent composts of Se-enriched mushrooms as the dietary Se source on muscular Se deposition and plasma glutathione peroxidase (GSH-Px) activity in the finishing Hanwoo steer. Twenty Hanwoo steers were used in the experiment and they were divided into four groups in a randomized complete block design with five replicates. Treatments were four levels (0.1, 0.3, 0.6 and 0.9ppm as fed basis) of dietary Se from the combination with spent composts of Se-enriched mushrooms and/or Se non-enriched mushrooms, in which each treatment was formulated with corn and corn gluten meal and so forth. Treatment diets were fed to Hanwoo steers for 90 days until the slaughter. Dry matter intakes had no significant differences among treatments and there were no significant differences for performances such as total BW gain and ADG among treatments. The Se concentration in blood was linearly increased with increasing dietary selenium levels and reached a plateau level after 8 weeks (p<0.001). Plasma GSH-Px activities had the similar trends to blood Se concentrations by showing that the increased dietary Se level significantly increased plasma GSH-Px activities of both total and Se-dependent (p<0.001). Muscle Se contents of Se-supplemented groups were linearly increased by 1.35 ~ 1.68 folds compared with the control group (0.1ppm; 0.273㎍/dry g) and especially those of the hind legs for 0.9ppm treatment showed the highest Se content as shown 0.457㎍ per dry gram (p<0.01) corresponding to approximately 70% increase of the control group. Se retention rate in the muscle of dietary Se originated from spent composts of Se-enriched mushrooms was estimated of maximum approximately 30% and dietary Se content showed the significant correlation with plasma GSH-Px activities and muscle Se contents (p<0.01). Accordingly, Se present in spent composts of Se-enriched mushroom as the dietary Se source not only had great bioavailabilities showing higher blood Se concentration and plasma GSH-Px activities, but also increased Se deposition in the muscle for Hanwoo beef cattle.

Effects of Zn-L-Selenomethionine on Carcass Composition, Meat Characteristics, Fatty Acid Composition, Glutathione Peroxidase Activity, and Ribonucleotide Content in Broiler Chickens

  • Chaosap, Chanporn;Sivapirunthep, Panneepa;Takeungwongtrakul, Sirima;Zulkifli, Razauden Mohamed;Sazili, Awis Qurni
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.338-349
    • /
    • 2020
  • The effects of organic Zn-L-selenomethionine (Zn-L-SeMet) at 0.3 ppm on carcass composition, meat characteristics, fatty acid composition, glutathione peroxidase activity, and ribonucleotide content were compared against the commercial inorganic sodium selenite (Na-Se) and the combination of the two, in commercial broilers. A total of 540 one day-old chicks were assigned at random to 3 dietary treatments : i) commercial inorganic selenium as control or T1, ii) a 1:1 ratio of inorganic and organic selenium as T2, and iii) organic selenium as T3. Carcass composition, meat characteristics, cholesterol content, fatty acid composition, and ribonucleotide content were generally unaffected by treatments. However, discrepancy were significantly observed in glutathione peroxidase activity (GSH-Px) and water holding capacity, with organic selenium showing higher glutathione peroxidase activity (p<0.01) and lower shrinkage loss (p<0.05), respectively. These findings could be explained by the contribution of organic selenium in bioavailability of GSH-Px. However, having conducted in a commercial close house system with sufficient amount of nutritional supplementation, the present study demonstrated little or no effects of organic Zn-L-SeMet on meat characteristics, fatty acid composition, and ribonucleotide content (flavor characteristic) in broiler chickens.

Alteration of hepatic anti-oxidant systems by 4-nonylphenol, a metabolite of alkylphenol polyethoxylate detergents, in Far Eastern catfish Silurus asotus

  • Park, Kwan Ha
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.6.1-6.7
    • /
    • 2015
  • Objectives This study aimed to estimate the effects of 4-nonylphenol (NP), a ubiquitously present surfactant in aquatic environments, on the anti-oxidant systems of the liver in the Far Eastern catfish Silurus asotus. Methods Changes in biochemical parameters involved in glutathione (GSH)-related and other anti-oxidant systems were analyzed following 4 weeks of 4-NP administration (0.1 and 1.0 mg/kg diet) via a formulated diet to catfish. Results 4-NP exposure induced an elevation in hepatic lipid peroxide levels and an accompanying decrease in reduced state GSH after 2 weeks, suggesting pro-oxidant effects of the chemical in catfish. This oxidative stress was associated with an inhibition of the GSH-utilizing enzyme glutathione peroxidase at the same time point. This inhibition was restored after 4 weeks. The activities of other anti-oxidant enzymes, i.e., glutathione reductase, superoxide dismutase and catalase were increased after 4 weeks. These enzyme increases occurred more strongly at the higher 4-NP concentration (1.0 mg/kg diet). Conclusions 4-NP given to catfish at 0.1 to 1.0 mg/kg diet, concentrations relevant to environmental levels, depletes the endogenous anti-oxidant molecule GSH and temporarily inhibits GSH-related anti-oxidant enzymes. Such declines in anti-oxidant capacity and elevated oxidative stress seem to be compensated eventually by subsequent activation of various anti-oxidant enzyme systems.

Change of ROS Generation and Antioxidant Enzyme Activity of Flavonol Quercetin in the Presence of Vitamin E, L-Ascorbit acid, Reduced Glutathione on the B16F10 Murine Melanoma Cells (B16F10 세포에서 Quercetin과 Vitamin E, L-Ascorbic acid, 환원형 글루타치온과의 병용 투여에 의한 활성산소종 발생과 항산화 효소의 활성 변화)

  • 허정심;김안근
    • YAKHAK HOEJI
    • /
    • v.47 no.6
    • /
    • pp.432-437
    • /
    • 2003
  • It has been known that quercetin, a bioflavonoid widely distributed in fruits and vegetables as dietary-derived flavonoid and exert significant multiple biological effects such as antioxidant and anti-inflammatory, anti-tumor effects. In addition, it has been shown to have a chemoprotective role in cancer, though complex effects on signal transduction involved in cell proliferation and angiogenesis. The present study investigated whether quercetin can enhance antioxidant enzyme activity (glutathione peroxidase: GPx, superoxide dismutase: SOD, catalase: CAT) and regulate the reactive oxygen species (ROS) generation in the presence of vitamin E, L-ascorbic acid, reduced glutathione (GSH) on B16F10 murine melanoma cells. After 48h treatment of cells with quercetin in the presence of vitamin E, L-ascorbic acid, GSH, we measured the cytotoxicities by MTT assay. The cells exhibited a dose-dependent inhibition in their proliferation in the presence of vitamin E, L-ascorbic acid, GSH respectively. We also investigated the effects of antioxidant enzyme activity and ROS generation. The antioxidant enzyme activity of quercetin in the presence of vitamin E was stronger than GSH, L-ascorbic acid, the same treatments decreased ROS generation in B16F10 murine melanoma cells. Taken together, these result demonstrate that the antioxidant effect of quercetin can enhanced in the presence of vitamin E and it might plays an important role in anti-oxidative effects.

Protective Effects of the BuOH Fraction from Laminaria japonica Extract on High Glucose-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

  • Park, Min-Jung;Song, Young-Sun;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.94-99
    • /
    • 2006
  • This study investigated the protective effect of the butanol (BuOH) fraction from Laminaria japonica (BFLJ) extract on high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs). Freeze-dried L japonica was extracted with distilled water, and the extracted solution was mixed with ethanol then centrifuged. The supernatant was subjected to sequential fractionation with various solvents. The BuOH fraction was used in this study because it possessed the strongest antioxidant activity among the various solvent fractions. To determine the protective effect of the BFLJ, oxidative stress was induced by exposing of HUVECs to the high glucose (30 mM) or normal glucose (5.5 mM) for 48 hr. Cell viability, lipid peroxidation, glutathione (GSH) concentration, and antioxidant enzyme activities such as catalase, superoxide dismutase (SOD), glutathione peroxidase (GSH-px), and glutathion reductase (GSH-re) were measured. Exposure of HUVECs to high glucose for 48 hr resulted in a significant (p<0.05) decrease in cell viability, SOD, GSH-px and GSH-re and a significant (p<0.05) increase in thiobarbituric acid reactive substances (TBARS) formation in comparison to the cells treated with 5.5 mM glucose or untreated with glucose. BFLJ treatment decreased TBARS formation and increased cell viability, GSH concentration, and activities of antioxidant enzymes including catalase, SOD, GSH-px, and GSH-re in high glucose pretreated HUVECs. These results suggest that BFLJ may be able to protect HUVECs from high glucose-induced oxidative stress, partially through the antioxidative defence systems.

Protective Effect of an Aged Garlic-bamboo Salt Mixture on the Rat with the Alcohol-salicylate Induced Gastropathy (마늘-죽염 제제가 위장 장애 유발 흰쥐의 항산화 효소활성에 미치는 영향)

  • Huh, Keun;Kim, Young-Hee;Jin, Da-Qing
    • YAKHAK HOEJI
    • /
    • v.45 no.3
    • /
    • pp.258-268
    • /
    • 2001
  • Garlic has been known to be effective against the gastrointestinal diseases which can be induced by production of oxygen-derived free radical. It has been shown that bamboo salt is effective on the treatment and prevention of various gastrointestinal disorders. Bamboo salt is a processed salt invented by a Korean, ll-Hoon Kim. It has been reported that garlic and bamboo-salt are useful to the treatment of gastric disorders in Korea. To clarify the protective mechanism of the garlic-bamboo salt mixture, the gas-tropathy was induced in rats with alcohol-salicylate and the activities of the free radical scavenging enzymes were examined. In this study, we found that the garlic-bamboo salt mixture reduced the severity of hemorrhagic lesion in gastric mucosa in the rats. In addition, the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) were significnatly increased and the total content of GSH was recovered. From those results, we concluded that the protective effect of the garlic-bamboo salt mixture on gastropathy in rats is its ability to recover the level of GSH and to increase the activities of the free radical scavenging enzymes (SOD, GPx, GR).

  • PDF

Alteration of mitochondrial DNA content modulates antioxidant enzyme expressions and oxidative stress in myoblasts

  • Min, Kyung-Ho;Lee, Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.519-528
    • /
    • 2019
  • Mitochondrial dysfunction is closely associated with reactive oxygen species (ROS) generation and oxidative stress in cells. On the other hand, modulation of the cellular antioxidant defense system by changes in the mitochondrial DNA (mtDNA) content is largely unknown. To determine the relationship between the cellular mtDNA content and defense system against oxidative stress, this study examined a set of myoblasts containing a depleted or reverted mtDNA content. A change in the cellular mtDNA content modulated the expression of antioxidant enzymes in myoblasts. In particular, the expression and activity of glutathione peroxidase (GPx) and catalase were inversely correlated with the mtDNA content in myoblasts. The depletion of mtDNA decreased both the reduced glutathione (GSH) and oxidized glutathione (GSSG) slightly, whereas the cellular redox status, as assessed by the GSH/GSSG ratio, was similar to that of the control. Interestingly, the steady-state level of the intracellular ROS, which depends on the reciprocal actions between ROS generation and detoxification, was reduced significantly and the lethality induced by $H_2O_2$ was alleviated by mtDNA depletion in myoblasts. Therefore, these results suggest that the ROS homeostasis and antioxidant enzymes are modulated by the cellular mtDNA content and that the increased expression and activity of GPx and catalase through the depletion of mtDNA are closely associated with an alleviation of the oxidative stress in myoblasts.

Effects of Spent Composts of Selenium-enriched Mushroom and Sodium Selenite on Plasma Glutathione Peroxidase Activity and Selenium Deposition in Finishing Hanwoo Steers

  • Lee, S.H.;Park, B.Y.;Lee, Sung S.;Choi, N.J.;Lee, J.H.;Yeo, J.M.;Ha, J.K.;Maeng, W.J.;Kim, W.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.984-991
    • /
    • 2006
  • Effects of spent composts of selenium-enriched mushroom (Se-SMC) on plasma glutathione peroxidase (GSH-Px) activity and selenium (Se) deposition in finishing Hanwoo (Bos taurus coreanae) steers were investigated. Twenty-five Hanwoo steers (average body weight = 613 kg, average age = 22 months) were allotted to treatments in five groups of five steers per pen for 12 weeks preceding slaughter. Treatments were SMC alone (CON; 0.1 ppm Se), 0.3 ppm (0.3 Se-SMC), 0.6 ppm (0.6 Se-SMC), 0.9 ppm (0.9 Se-SMC), and 0.9 ppm (sodium selenite; SENI) Se. During the experimental period, blood samples were taken to analyze Se concentrations and GSH-Px activities. Muscle and liver samples were collected for analyses of Se contents after slaughter. Dry matter intake and body weight gain were not affected by Se-SMC or sodium selenite supplementation. Selenium concentration in the whole blood and GSH-Px activity in plasma were linearly increased (p<0.01) with increasing levels of Se-SMC. The whole blood Se concentration of SENI treatment was significantly higher (p<0.05) than that of CON treatment from 4 weeks, whereas there was no significant difference in GSH-Px activities between both treatments at 8 and 12 weeks. Selenium content in the hind leg and liver increased linearly (p<0.05) with increasing levels of Se-SMC, but those of SENI treatments were not significantly different from CON treatments. These results suggested that Se in the Se-SMC was highly bioavailable to blood and tissues of ruminants, especially compared with Se in the sodium selenite. Therefore, Se-SMC might be used not only as an inexpensive way of providing Se for ruminants but also as another way of producing Se-fortified beef.

Effects of Wolguk-whan Water Extract on Acute Oxidative Liver Injury Induced by Acetaminophen (월국환(越鞠丸) 물 추출물이 Acetaminophen으로 유도된 마우스의 급성 간손상에 미치는 효과)

  • Lee Chae-Jung;Park Sun-Dong;Moon Jin-Young
    • Herbal Formula Science
    • /
    • v.11 no.2
    • /
    • pp.135-146
    • /
    • 2003
  • Objectives : Wolguk-whan has been used as a prescription of natural drug for the treatment of stress digestive system disease. Recently, we reported that Wolguk-whan methnol extract (WGWM) exerted a significant protective effect against oxidative damage to the liver of ICR mice. This study was purposed to investigate the effects of Wolguk-whan water extract (WGWW) on liver injury induced by oxidative stress. Methods : In order to investigate the effects of WGWW on acute liver injury, ICR mice were pretreated with WGWW for 6days, starved for 24hrs, and administerated acetamirtophen(500mg/kg, i.p.). In the liver homogenates, lipid peroxide and glutathione(GSH) levels were measured. In addition, activities of hepatic enzyme, such as catalase, glutathione peroxidase(GSH-Px), glutathione S-transferase(GST) were measured in the hepatic mitochondrial and cytosolic fractions. Results : In vivo administeration of WGWW showed effective inhibition of acetaminophen induced lipid peroxidation, and showed elevations of GSH level, catalase, GSH-Px, GST activities. Conclusions : These results suggested that WGWW might suppress the formation of oxidative metabolites, and prevent acetaminophen induced hepatotoxicity.

  • PDF