• 제목/요약/키워드: GSH

검색결과 1,285건 처리시간 0.027초

Effect of Dietary Supplementation of Glutathione on Blood Biochemical Changes and Growth Performances of Holstein Calves

  • Kim, Jong-Hyeong;Mamuad, Lovelia L.;Lee, Hyun-June;Ki, Kwang-Seok;Lee, Wang-Shik;Ha, Jong-K.;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권12호
    • /
    • pp.1711-1717
    • /
    • 2011
  • The objective of this experiment was to evaluate the effect of dietary supplementation of glutathione (GSH) on health, solid feed consumption, nutrient intake, body weight gain (BWG), feed efficiency, blood metabolites and the occurrence of diarrhea in Holstein neonatal calves. The calves were fed plain milk as a control (CON) or milk with GSH supplementation. Sixteen calves were separated from their mothers immediately after birth, moved into individual cages and fed colostrum for the first three days. For GSH supplementation, three grams of GSH powder were mixed in 1.8 L of heat-treated milk and placed in a plastic bottle with a rubber nipple. The calves were fed GSH-supplemented milk only once out of four daily feedings. For the first 25 d, calves were fed 1.8 L of milk four times per day. Milk feeding frequency was reduced to three times per day from days 26 to 30, followed by twice a day from days 31 to 44, and once a day from days 45 to 49, after which they were weaned at day 50. Body weight gain (BWG), feed consumption, and growth performance were monitored until day 70. The dietary supplementation of GSH had no effect on daily feed intake and growth performance in growing calves. Hematological results revealed red blood cell distribution width (RDW) was lower, and mean corpuscular volume (MCV) was significantly higher in calves fed GSH. Serum lactate dehydrogenase (LDH) concentrations were lower in calves fed GSH. Rectal temperature at day 70 was higher in calves that did not receive GSH, while mean frequency of diarrhea and enteritis was less in calves fed GSH. It is concluded from the present study that BW gain, total dry matter intake (DMI), feed efficiency, and breathing rate did not differ between groups. However, there were some positive blood parameters and the mean frequency of diarrhea and enteritis was less in calves fed GSH compared to CON which did not receive GSH. With the results obtained, supplementation of GSH is highly recommended.

Establishment of New Method for the Assay of Glutamate-cysteine Ligase Activity in Crude Liver Extracts

  • Kwon Young-Hye;Stipanuk Martha H.
    • Toxicological Research
    • /
    • 제22권1호
    • /
    • pp.39-45
    • /
    • 2006
  • As the antioxidant and free radical scavenger, glutathione (GSH) participates in the preservation of cellular redox status and defense against reactive oxygen species and xenobiotics. Glutamate-cysteine ligase (GCL; also known as ${\gamma}$-glutamylcysteine synthetase, EC 6.3.2.2) is the rate limiting enzyme in GSH synthesis. In the present study, the accurate method for determination of GCL activity in crude liver extracts was developed by measuring both ${\gamma}$-glutamylcysteine and GSH from cysteine in the presence of glutamate, glycine and an ATP-generating system. We added glycine to promote the conversion of ${\gamma}$-glutamylcysteine to GSH, and to minimize the possibility of ${\gamma}$-glutamylcysteine metabolism to cysteine and oxoproline by ${\gamma}$-glutamylcyclotransferase. We established optimal conditions and substrate concentrations for the enzyme assay, and verified that inhibition of GCL by GSH did not interfere with this assay. Therefore, this assay of hepatic GCL under optimal conditions could provide a more accurate measurement of this enzyme activity in the crude liver extracts.

사염화탄소와 Monosodium-L-Glutamate 병용투여에 의한 간조직의 환원형글루타치온 함량 및 그의 관련효소활성의 변화 (Alterations of Glutathione and Glutathione-Dependent Enzyme Activities by Monosodium-L-Glutamate in Rats with Carbon Tetrachloride-Induced Liver Damage)

  • 김형춘;이왕섭;전완주;김수희;주왕기
    • 약학회지
    • /
    • 제35권5호
    • /
    • pp.384-388
    • /
    • 1991
  • To explore the effect of monosodium-L-glutamate(MSG) on CCI$_{4}$-damaged liver in Wister male rat, 5% MSG solution as drink water were administered after S.C. injection of 0.1 mg/kg CC1$_{4}$ twice a week for 4 weeks. After last administration of MSG, heptic glutathione(GSH) dependent system was assayed. It showed that MSG increased significanly hepatic glutathione(GSH) and glutathione peroxidase(GSH$_{px}$), but decreased glutathione-S-transferase(GST) acivity in normal rats. MSG increased significantly the GSH$_{px}$ and GST activities in rats with CCI$_{4}$-induced liver damage. These results indicate that decrease of GSH dependent systems in CC1$_{4}$ liver injury might be partially elevated by coadministration of MSG.

  • PDF

Important Role of Glutathione in Protecting Against Menadione-Induced Cytotoxicity in Rat Platelets

  • Cho, Youn-Sook;Seung, Sang-Ae;Kim, Mee-Jeong;Lee, Joo-Young;Chung, Jin-Ho-Chung
    • Archives of Pharmacal Research
    • /
    • 제19권1호
    • /
    • pp.12-17
    • /
    • 1996
  • Our previous studies demonstrate that menadione (MEN) is cytotoxic to platelets of rats by depleting glutathione (GSH). In order to clarify whether GSH has a role in protecting against menadione-induced cytotoxicity, the effect of GSH depletors as well as GSH precusors on menadione-induced cytotoxicity was investigated. Cysteine and dithiothreitol (DTT) prevent MEN-induced cytotoxicity in a dose-dependent manner, as determined by LDH leakage and change in turbidity. When platelets were treated with 1-chloro-2,4-dinitrobenzene (CDNB) and diethylmaleate (DEM), both of which deplete intracellular GSH, MEN-induced cytotoxicity was potentiated in the CDNB-treated paltelets, but not in the DEM-treated platelets. These data suggest that the GSH in platelets plays an important role in protecting against cytotoxicity induced by menadione.

  • PDF

홍삼 사포닌의 항산화활성 성분 Screening (Screening of Antioxidative Components from Red Ginseng Saponin)

  • 김정선;김규원
    • Journal of Ginseng Research
    • /
    • 제20권2호
    • /
    • pp.173-178
    • /
    • 1996
  • Aerobic cells are normally protected from the damage of free radicals by antioxidative on , zymes such as superoxide dismutase (SOD), catalase, glutathione (GSH) peroxidase, GSH S- transferase and GSH reductase which scavenge free radicals as well as nonenzymatic antioxidants such as ceruloplasmin, albumin and nonprotein-SH including GSH. The effects of each component (ginsenoside $Rb_1$, $Rb_2$, Rc, Rd, Re, $Rb_1$, Rf, $Rh_1$ and $Rh_2$) of red ginseng on the antioxidative enzyme activities were investigated in the liver in order to screen antioxidative components of red ginseng. Ginsenoside $Rb_1$ and Rc showed a tendency to increase GSH peroxidase activity, while ginsenoside Rc significantly decreased Cu,Zn-SOD activity. Especially, ginsenoside $Rh_2$ significantly increased catalase activity. These results suggest that ginsenoside $Rh_2$ is an important active component among total saponins of red ginseng.

  • PDF

Comparison of Neurotoxicity Induced by Some Glutathione Depletors in Mouse Cortical Cell Cultures

  • Lee, Gee-Woon;Lee, Kuy-Sook;Park, Sah-Hoon;Bae, Choon-Sang;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.177-183
    • /
    • 2000
  • We examined the neurotoxic effects of 3 glutathione (GSH) depletors, buthionine sulfoximine (BSO), diethyl maleate (DEM) and phorone, under the presence of trolox, cycloheximide (CHX), pyrrolidine dithiocarbamate (PDTC) or MK-801 in primary mouse cortical cell cultures. All three depletors induced neuronal death in dose and exposure time dependent manner, and decreased total cellular GSH contents. The patterns of the neuronal death and the GSH decrements were dependent on the individual agents. DEM $(200\;{\mu}M)$ induced rapid and irreversible decrement of the GSH. BSO (1 mM) also decreased the GSH irreversibly but the rate of decrement was more progressive than that of DEM. Phorone (1 mM) reduced the GSH content to 40% by 4 hr exposure, that is comparable to the decrement of BSO, but the GSH recovered and reached over the control value by 36 hr exposure. BSO showed a minimal neurotoxicity $(0{\sim}10%)$ at the end of 24 hr exposure, but marked neuronal cell death at the end of 48 hr exposure. The BSO (1 mM)-induced neurotoxicity was markedly inhibited by trolox or CHX and partially attenuated by MK-801. DEM induced dose-dependent cytotoxicity at the end of 24 hr exposure. Over the doses of $400\;{\mu}M,$ glial toxicity also appeared. DEM $(200\;{\mu}M)-induced$ neurotoxicity was markedly inhibited by trolox or PDTC. Phorone (1 mM) induced moderate neurotoxicity (40%) at the end of 48 hr exposure. Only CHX showed significant inhibitory effect on the phorone-induced neurotoxicity. These results suggest that the GSH depletors induce neuronal injury via different mechanisms and that GSH depletors should be carefully employed in the researches of neuronal oxidative injuries.

  • PDF

A Study on the Decondensation and Pronucleus Formation of Sperm Nucleus in the Mouse Oocyte

  • Kang, Hee-Gyoo;Kim, Tai-Jeon;Bae, Hyung-Joon;Moon, Hi-Joo;Lee, Ho-Joon;Yang, Hye-Young;Kim, Moon-Kyoo
    • 대한의생명과학회지
    • /
    • 제7권4호
    • /
    • pp.173-179
    • /
    • 2001
  • To investigate the ability to decondense sperm head penetrated into cytoplasm of the oocytes and the relationship between this ability and the level of glutatione (GSH) in mouse oocyte at various maturing stages. The fertilizability of oocytes at various stages of maturation the decondensation of sperm nucleus and the formation of male pronucleus, were observed and the levels of GSH were measured in oocyte at same stages. Besides, the relation between fertilizability and level of GSH in oocyte cytoplasm treated with L-buthionine-S, R-sulfoxmine (L-BSO), the inbitor of biosynthesis of GSH, was determined. The decondensation of sperm head was not found in GV stage and L-BSO treated oocytes. In maturing oocytes (GVBD, MI), the decondensation was found, but the formation of male pronucleus was not. The levels of GSH in oocyte cytoplasm were measured; 2.2 pmol per oocyte in the ovulated and the matured in vitro each, 1.0 pmol in GV intact oocyte, 1.3 pmol in GVBD, and 1.5 pmol in MI phase oocyte. In L-BSO treated oocytes the levels of CSH were measured 0.08~o.09 pmol per oocyte, slightly lower than GV stage oocyte. In conclusion, GSH in oocyte is supposed to be synthesized and storaged in cytoplasm during maturation. The failure of decondensation in the cytoplasm of GV stage and L-BSO treated is suggested that GSH is an essential factor in decondensing the sperm head and that the a certain level of GSH, more than in GV oocyte cytoplasm, is required in decondensation.

  • PDF

Assembly of Magnetic Nano-Fe3O4@GSH-Au NCs Core-Shell Microspheres for the Visualization of Latent Fingerprints

  • Huang, Rui;Tang, Tingting
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850128.1-1850128.10
    • /
    • 2018
  • Glutathione (GSH), the protective agent and reducing agent, has been widely used to prepare gold nanoclusters (GSH-Au NCs) with stable fluorescence properties and negative charge of the surface. Meanwhile, polyethyleneimine (PEI) was used as the modification agent to synthesize magnetic ferroferric oxide nanoparticles ($Fe_3O_4$) with fantastic dispersibility and positive charge of the surface. Based on the electrostatic adsorption force, magnetic nano-$Fe_3O_4@GSH-Au$ NCs core-shell microspheres composed of magnetic $Fe_3O_4$ nanoparticles modified by PEI as the core and GSH-Au NCs as the shell were assembled. The prepared $Fe_3O_4@GSH-Au$ NCs microspheres harbored a uniform size (88.6 nm), high magnetization (29.2 emu/g) and excellent fluorescence. Due to the coordination bond action between Au atom and sulfhydryl (-SH), amino ($-NH_2$), carboxyl (-COOH) in sweat, $Fe_3O_4@GSH-Au$ NCs could combine with latent fingerprints. In addition, $Fe_3O_4@GSH-Au$ NCs with good fluorescence and magnetism could detect fingerprints on various objects. Significantly, the powders were not easy to suspend in the air, which avoided the damage to the health of forensic experts and the fingerprints by only powder contacting. Above all, $Fe_3O_4@GSH-Au$ NCs was successfully applied to the latent fingerprint visualization, which has great potential in forensic science.

Occurrence of Glutathione Sulphydryl (GSH) and Antioxidant Activities in Probiotic Lactobacillus spp.

  • Yoon, Yung H.;Byun, Jung R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권11호
    • /
    • pp.1582-1585
    • /
    • 2004
  • The antioxidative ability on the basis of reduced glutathione sulphydryl level, the inhibition activities of linoleic acid peroxidation of cell free extract of Lactobacillus spp. and the effects of types of media and growth phase of the cells on the cellular GSH level have been determined. Correlation between reduced glutathione sulphydryl level and antioxidative ability of Lactobacillus spp. was analyzed: Lactobacillus casei HY 2782 contained 25.15 $\mu$mole/g of GSH, the cellular GSH level of L. casei HY 2782 reached maximum after 24 h of cultivation and tended to decrease on further cultivation up to 72 h. There was a significantly higher level of cellular GSH when grown in de Man Rogosa and Sharpe (MRS) broth than in tryptone phytone yeast extract (TPY) broth or bromcresol pruple dextrose (BCP) broth (p<0.05). The antioxidant activity of cell free extract of Lactobacillus spp. have been shown to be significantly different among strains in the inhibition of linoleic acid peroxidation by thiobarbituric acid (TBA) test (p<0.01). L. casei HY 2782 and L. acidophilus ATCC 4356 revealed a high degree of antioxidative effect in linoleic acid oxidation system. Spearmans' rank correlation coefficient between inhibitory activity on linoleic acid peroxidation and cellular GSH levels of Lactobacillus spp. was 0.65, which means a significant positive correlation.

Suppression of Arsenic Trioxide-induced Apoptosis in HeLa Cells by N-Acetylcysteine

  • Han, Yong Hwan;Kim, Sung Zoo;Kim, Suhn Hee;Park, Woo Hyun
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.18-25
    • /
    • 2008
  • Arsenic trioxide (ATO) can affect many biological functions such as apoptosis and differentiation in various cells. We investigated the involvement of ROS and GSH in ATO-induced HeLa cell death using ROS scavengers, especially N-acetylcysteine (NAC). ATO increased intracellular ${O_2}^{{\cdot}-}$ levels and reduced intracellular GSH content. The ROS scavengers, Tempol, Tiron and Trimetazidine, did not significantly reduce levels of ROS or GSH depletion in ATO-treated HeLa cells. Nor did they reduce the apoptosis induced by ATO. In contrast, treatment with NAC reduced ROS levels and GSH depletion in the ATO-treated HeLa cells and prevented ATO-induced apoptosis. Treatment with exogenous SOD and catalase reduced the depletion of GSH content in ATO-treated cells. Catalase strongly protected the cells from ATO-induced apoptosis. In addition, treatment with SOD, catalase and NAC slightly inhibited the G1 phase accumulation induced by ATO. In conclusion, NAC protects HeLa cells from apoptosis induced by ATO by up-regulating intracellular GSH content and partially reducing the production of ${O_2}^{{\cdot}-}$.