• Title/Summary/Keyword: GSH(glutathione)

Search Result 925, Processing Time 0.023 seconds

Glutathione Content in Various Seedling Plants, Vegetables, and the Processed Foods (각종 유식물체, 채소 및 가공식품 중의 글루타치온 함량)

  • Kim, Ju-Sung;Shim, Ie-Sung;Kim, Myong-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.592-596
    • /
    • 2009
  • In this study, we investigated the levels of glutathione (GSH) and its oxidized form (GSSG) in more than 40 kinds of plant materials including seedling plants, grains, vegetables, and processed foods. The glutathione contents in the seedling plants were ranged from 0 to $120{\mu}mol/100g$. In addition, the different levels of glutathione were observed within the same family and between species. In the case of marketed grains and vegetables, azuki and kidney beans of leguminosae contained the high levels of glutathione, whereas glutathione was scarcely detected in the processed bean foods (bean paste, soybean sauce, etc.). Overall, a higher GSH content in food may contribute to a higher added value.

C-terminal truncation of a bovine B12 trafficking chaperone enhances the sensitivity of the glutathione-regulated thermostability

  • Jeong, Jinju;Park, Jihyun;Lee, Dong-Yeon;Kim, Jihoe
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.169-174
    • /
    • 2013
  • The human $B_{12}$ trafficking chaperone hCblC is well conserved in mammals and non-mammalian eukaryotes. However, the C-terminal ~40 amino acids of hCblC vary significantly and are predicted to be deleted by alternative splicing of the encoding gene. In this study, we examined the thermostability of the bovine CblC truncated at the C-terminal variable region (t-bCblC) and its regulation by glutathione. t-bCblC is highly thermolabile ($T_m={\sim}42^{\circ}C$) similar to the full-length protein (f-bCblC). However, t-bCblC is stabilized to a greater extent than f-bCblC by binding of reduced glutathione (GSH) with increased sensitivity to GSH. In addition, binding of oxidized glutathione (GSSG) destabilizes t-bCblC to a greater extent and with increased sensitivity as compared to f-bCblC. These results indicate that t-bCblC is a more sensitive form to be regulated by glutathione than the full-length form of the protein.

BIOACTIVATION OF DIBROMOETHANE BY CONJUGATION WITH GLUTAHIONE

  • Kim, Dong-Hyun
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.231-238
    • /
    • 1991
  • The pesticide and carcinogen ethylene dibromide(EDB) is metabolized both by cytosolic GSH S-transferase and by microsomal mixed function oxygenase. Cytochrome P-450 IIE1 appears to be major enzyme to metabolize EDB.EDB is activated to a mutagen by enzymatic conjugation with glutathione (GSH). Such activation is an exception to the general mode of detoxification via GSH S-transferase action. The primary DNA adduct (>95) is S-[2-(N7-guanyl)ethyl] GSH and a minor adduct is S-[2-(N7-guanyl)ethyl]cysteine, which is excreted in the urine and may serve as a biomarker of damage.

  • PDF

Potential Chemoprevention Activity of Pterostilbene by Enhancing the Detoxifying Enzymes in the HT-29 Cell Line

  • Harun, Zaliha;Ghazali, Ahmad Rohi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6403-6407
    • /
    • 2012
  • Detoxifying enzymes are present in most epithelial cells of the human gastrointestinal tract where they protect against xenobiotics which may cause cancer. Induction of examples such as glutathione S-transferase (GST) and its thiol conjugate, glutathione (GSH) as well as NAD(P)H: quinoneoxidoreductase (NQO1) facilitate the excretion of carcinogens and thus preventing colon carcinogenesis. Pterostilbene, an analogue of resveratrol, has demonstrated numerous pharmacological activities linked with chemoprevention. This study was conducted to investigate the potential of pterostilbene as a chemopreventive agent using the HT-29 colon cancer cell line to study the modulation of GST and NQO1 activities as well as the GSH level. Initially, our group, established the optimum dose of 24 hours pterostilbene treatment using MTT assays. Then, effects of pterostilbene ($0-50{\mu}M$) on GST and NQO1 activity and GSH levels were determined using GST, NQO1 and Ellman assays, respectively. MTT assay of pterostilbene ($0-100{\mu}M$) showed no cytotoxicity toward the HT-29 cell line. Treatment increased GST activity in the cell line significantly (p<0.05) at 12.5 and $25.0{\mu}M$. In addition, treatment at $50{\mu}M$ increased the GSH level significantly (p<0.05). Pterostilbene also enhanced NQO1 activity significantly (p<0.05) at $12.5{\mu}M$ and $50{\mu}M$. Hence, pterostilbene is a potential chemopreventive agent capable of modulation of detoxifiying enzyme levels in HT-29 cells.

A Study on the Effect of Injection Frequency on the Liver Damage in Rats (Bromobenzene의 투여 횟수에 따른 간독성의 차이)

  • 이상희;전태원;윤종국
    • Biomedical Science Letters
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • To investigate the effect of injection frequency of bromobenzene on the liver damage, bromobenzene (400 mg/kg, i.p.) was given daily to rats for six days. All experimental animals were sacrificed at 24 hours after the last injection. Morphological changes of the liver were observed under a light microscopic examination. Functional changes of the liver were evaluated by the measurement of alanine aminotransferase activity. To clarify the cause of discrepancy in liver damage, hepatic glutathione (GSH) content, glutathione S-transferase (GST) and aniline hydroxylase (AH) activities were determined. In the experiments of daily bromobenzene treatments, the sacrificed animals at six day (6 time-injected animals) showed slighter liver damage than those sacrificed at 3 day (3 time-injected ones), based on the liver morphological or functional findings; the decreasing ratio of GSH content and increasing ratio of liver GST and AH activities in the 6 time-injected group were higher than those in the 3 time-injected one.

  • PDF

Effect of Thiol Compounds and Antioxidants on In Vitro Development and Intracellular Glutathione Concentrations of Bovine Embryos Derived from In Vitro Matured and In Vitro Fertilized I. Effect of $\beta$-Mercaptoethanol and Cysteamine on Development and Intracellular Glutathione Concentrations of Bovine IVM/IVF Embryos (Thiol 화합물과 황산화제 첨가배양이 소 체외수정란의 체외발육과 세포내 Glutathione 농도 변화에 미치는 효과 I. $\beta$-Mercaptoethanol과 Cysteamine 첨가가 소 체외수정란의 체외발육과 세포내 Glutathione 농도 변화에 미치는 영향)

  • 양부근;박동헌;정희태;박춘근;김종복;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.4
    • /
    • pp.335-343
    • /
    • 1997
  • The effect of thiol compounds on development and intracellular glutathione(GSH) concentrations of bovine embryos produced by in vitro maturation and in vitro fertilization(IVM/IVF) was examined in CRlaa medium with or without $\beta$-mercaptoethanol(0, 10, 25 and 50$\mu$MME) and cysteamine(0, 25, 50 and 75 $\mu$M). Numbers of cells comprising blastocysts were also counted using double fluorescence stain and the total glutathione levels(oxidized and reduced form) of morula and blastocyst embryos were than measured by an enzymatic method. Following routine IVM/IVF procedures oocytes and zygotes were cultured for 40 to 44h in CRlaa medium. Then 2 to 8-cell embyos had cumulus cell removed and were allotted randomly to the experimental medium. In Experiment 1, the proportion of embryos developing to and beyond morulae stages in 0, 10, 25 and 50 $\mu$M $\beta$-ME was 42.9%, 50.0%, 53.7% and 65.6%, respectively. Fifty $\mu$M $\beta$-ME group was significantly higher than those of any other groups (P<0.05). In Experiment 2, the percentages of embryos developed beyond morulae stages in 0, 25, 50 and 75 $\mu$M cysteamine was 42.9%, 40.4%, 60.0% and 59.2%, respectively. Fifty and 75$\mu$M cysteamine groups were significantly higher than in 0 and 25 $\mu$M cysteamine groups, but all of culture medium containing cysteamine(52.6%) was not significantly difference in control group(42.9%). In Experiment 3, the intracellular GSH concentrations of morulae and blastocyst embryos in 0 and 50 $\mu$M $\beta$-ME was 42.4 pM and 44.9 pM, 49.5 pM and 67.8 pM, respectively. Morulae embryos were not difference, but blastocyst embryos were significantly difference between treatments(P<0.05). In Experiment 4, the intracellular GSH concentrations of morulae in CRlaa with or without cysteamine were 39.8 pM and 45.6 pM, and blastocysts were 59.3 pM and 66.8 pM, respectively. Cell numbers of blastocysts were similar to in all experimental groups. These experiments indicate that thiol compounds can increase the proportion of embryos that developing to and beyond morulae stage and the intracellular GSH concentrations.

  • PDF

Effects of Chronic Alcohol Feeding and 2-Acetylaminofluorene Treatment on Microsomal Cytochrome P-450 and Glutathione Dependent Enzymes Activities in Rat Liver (만성 알코올 섭취시 2-Acetylaminofluorene 투여가 흰쥐간 Cytochrome P-450 및 Glutathione 이용 효소계 활성에 미치는 영향)

  • 김정희;최옥희;윤혜진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.859-866
    • /
    • 1995
  • This study was done to investigate the effects of chronic ethanol feeding on hepatic microsomal cytochrome system, lipid peroxidation and peroxide metabolizing enzyme activities in 2-acetylaminofluorene(2-AAF) treated rats. Male Sprague-Dawley rats, weighing 120~125g, were pair-fed liquid diets containing 35% of total calories either as ethanol or isocaloric carbohydrates for 6 weeks. After 4 weeks of experimental diet feeding, 2-AAF(100mg/kg body weight) was injected twice a week intraperitoneally. Both weight and percent liver weight per body weight were significantly changed by ethanol feeding. Hepatic microsomal lipid peroxide value and the activities of glutathione(GSH) peroxidase and GSH reductase were not changed by either ethanol or 2-AAF treatment. However the analysis of cytochrome systems showed that both ethanol and 2-AAF increased cytochrome P-450 and bs contents although cytochrome P-450 content was moe affected by 2-AAF while cytochrome b5 content by ethanol. Cytosolic GSH S-transferase activity, which is often elevated during chemical carcinogenesis, also significantly increased by either ethanol feeding or 2-AAF treatment. Overall values for the cytochrome contents and GSH S-transferase activities were highest in 2-AAF treated rats fed ethanol. These results might support the hypothesis that the increase in liver cancer risk associated with chronic ethanol consumption might be due to, at least in part, enhancement of carcinogen bioactivation by ethanol.

  • PDF

Glutathione and Glutathione-Related Enzymes during Dictyostelium Development

  • Kim, Beom-Jun;Park, Chang-hoon;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.48-48
    • /
    • 2002
  • Glutathione (GSH) is most prevalent reducing thiols in eukaryotic cells and known that participates in many cellular processes. It was found that total amount of glutathione and the ratio of reduced to oxidized glutathione during development of Dictyostelium discoideum increase at the initial stage of the aggregation of amoeba.(omitted)

  • PDF

PROTECTIVE EFFECT OF SELENIUM ON GLUTATHIONE METABOLISM BY MERCURY TOXICITY IN THE CHO CELLS

  • Byun, Boo-Hyung;Cho, Su-Jung;Chung, An-Sik
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 1991
  • The treatment with 5ng/ml of mercuric chloride caused time-dependent decreases, and in the activities of GSH S-transferase and GSH-peroxidase, and in the concentration of GSH in CHO cells. Three hours after treatment of $Hg^{2+}$, the activity of GSH S-transferase was decreased to almost half value of control group and the activity of GSH-peroxidase was reduced significantly at 6 hr after treatment. The concentration of GSH was decreased 2 hr after treatment of $Hg^{2+}$ and was decreased to nearly half value of control group 3 hr after treatment.

  • PDF

Contribution of Arginine 13 to the Catalytic Activity of Human Class Pi Glutathione Transferase P1-1

  • Kong, Ji-Na;Jo, Dong-Hyeon;Do, Hyun-Dong;Lee, Jin-Ju;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2497-2502
    • /
    • 2010
  • Arg13 is a conserved active-site residue in all known Pi class glutathione S-transferases (GSTs) and in most Alpha class GSTs. To evaluate its contribution to substrate binding and catalysis of this residue, three mutants (R13A, R13K, and R13L) were expressed in Escherichia coli and purified by GSH affinity chromatography. The substitutions of Arg13 significantly affected GSH-conjugation activity, while scarcely affecting glutathione peroxidase or steroid isomerase activities. Mutation of Arg13 into Ala largely reduced the GSH-conjugation activity by approximately 85 - 95%, whereas substitutions by Lys and Leu barely affected activity. These results suggest that, in the GSH-conjugation activity of hGST P1-1, the contribution of Arg13 toward catalytic activity is highly dependent on substrate specificities and the size of the side chain at position 13. From the kinetic parameters, introduction of larger side chains at position 13 results in stronger affinity (Leu > Lys, Arg > Ala) towards GSH. The substitutions of Arg13 with alanine and leucine significantly affected $k_{cat}$, whereas substitution with Lys was similar to that of the wild type, indicating the significance of a positively charged residue at position 13. From the plots of log ($k_{cat}/{K_m}^{CDNB}$) against pH, the $pK_a$ values of the thiol group of GSH bound in R13A, R13K, and R13L were estimated to be 1.8, 1.4, and 1.8 pK units higher than the $pK_a$ value of the wild-type enzyme, demonstrating the contribution of the Arg13 guanidinium group to the electrostatic field in the active site. From these results, we suggest that contribution of Arg13 in substrate binding is highly dependent on the nature of the electrophilic substrates, while in the catalytic mechanism, it stabilizes the GSH thiolate through hydrogen bonding.