Glutathione Content in Various Seedling Plants, Vegetables, and the Processed Foods

각종 유식물체, 채소 및 가공식품 중의 글루타치온 함량

  • Kim, Ju-Sung (Oriental Bio-herb Research Institute, Kangwon National University) ;
  • Shim, Ie-Sung (Department of Environmental Horticulture, University of Seoul) ;
  • Kim, Myong-Jo (Oriental Bio-herb Research Institute, Kangwon National University)
  • 김주성 (강원대학교 한방Bio연구소) ;
  • 심이성 (서울시립대학교 환경원예학과) ;
  • 김명조 (강원대학교 한방Bio연구소)
  • Published : 2009.10.31

Abstract

In this study, we investigated the levels of glutathione (GSH) and its oxidized form (GSSG) in more than 40 kinds of plant materials including seedling plants, grains, vegetables, and processed foods. The glutathione contents in the seedling plants were ranged from 0 to $120{\mu}mol/100g$. In addition, the different levels of glutathione were observed within the same family and between species. In the case of marketed grains and vegetables, azuki and kidney beans of leguminosae contained the high levels of glutathione, whereas glutathione was scarcely detected in the processed bean foods (bean paste, soybean sauce, etc.). Overall, a higher GSH content in food may contribute to a higher added value.

40종류 이상의 식물의 유식물체, 채소 그리고 가공식품의 글루타치온과 그의 산화형 글루타치온(GSSG)함량을 측정하였다. 유식물체를 이용한 실험에서 총글루타치온 함량은, 100 g(생체중)당 $0-120{\mu}mol$의 범위였으며, 같은 과, 종 및 품종에 있어서도 현저한 차이를 나타내었다. 특히, 시판되고 있는 곡물과 채소를 이용한 실험에서는 콩과의 팥과 강낭콩에서 높은 글루타치온 함량을 나타내었다. 콩을 이용한 가공식품(고추장, 된장, 간장 등)에서는 글루타치온 함량이 거의 검출되지 않았다. 식품에 있어서 고농도의 글루타치온은 식품의 높은 부가가치가 되리라 생각된다.

Keywords

References

  1. Cooper AJL. Glutathione in the brain: disorders of glutathione metabolism. pp. 1195-1230. In: The molecular and genetic basis of neurological disease. Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL, Kunk LM. (eds.) Butterworth-Heinemann, Boston, MA, USA (1997)
  2. Penninckx MJ, Elskens MT. Metabolism and functions of glutathione in micro-organisms. Adv. Microb. Physiol. 32: 239-240 (1993) https://doi.org/10.1016/S0065-2911(08)60031-4
  3. Higashi T, Tateishi N, Naruse A, Sakamoto Y. A novel physiological role of liver glutathione as reservoir of L-cysteine. J. Biochem. 82: 117-124 (1977)
  4. Reed DJ, Beatty PW. Biosynthesis and regulation of giutathione: Toxicological implications. Vol. 2, pp. 213-241. In: Reviews in Biochemical Toxicology. Hodgson E, Bend JR, Philpot RM. (eds). Elsevier/North Holland, Inc., New York, NY, USA (1980)
  5. Jakoby WB. The glutathione S-transferases: A group of multifunctional detoxification proteins. Adv. Enzymol. 46: 383-414 (1978)
  6. Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu. Rev. Pharmacol. 39: 67-101 (1999) https://doi.org/10.1146/annurev.pharmtox.39.1.67
  7. Smirnova GV, Muzyka NG, Glukhovchenko MN, Oktyabrsky ON. Effects of menadione and hydrogen peroxide on glutathione status in growing Escherichia coli. Free Radical Bio. Med. 28: 1009-1016 (2000) https://doi.org/10.1016/S0891-5849(99)00256-7
  8. Wang W, Ballatori N. Endogenous glutathione conjugates: Occurrence and biological functions. Pharmacol. Rev. 50: 335-356 (1998)
  9. Kakinuma M, Park CS, Amano H. Distribution of free L-cysteine and glutathione in seaweeds. Fish. Sci. 67: 194-196 (2001) https://doi.org/10.1046/j.1444-2906.2001.00223.x
  10. Lee JE, Ahn YO, Kwon SY, Lee HS, Kim SW, Park IH, Kwak SS. Glutathione contents in various plant cell lines. Korean J. Plant Tissue Culture 27: 57-61 (2000)
  11. Mills BJ, Stinson CT, Liu MC, Lang CA. Glutathione and cyst(e)ine profiles of vegetables using high performance liquid chromatography with dual electrochemical detection. J. Food Compos. Anal. 10: 90-101 (1997) https://doi.org/10.1006/jfca.1997.0526
  12. Wierzbicka GT, Hagen TM, Jones DP. Glutathione in food. J. Food Compos. Anal. 2: 327-337 (1989) https://doi.org/10.1016/0889-1575(89)90004-5
  13. Noctor G, Gomez L, Vanacker H, Foyer CH. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot. 53: 1283- 1304 (2002) https://doi.org/10.1093/jexbot/53.372.1283
  14. Ogawa K. Glutathione-associated regulation of plant growth and stress responses. Antioxid. Redox Sign. 7: 973-981 (2005) https://doi.org/10.1089/ars.2005.7.973
  15. Barabas KN, Szegletes Z, Pestenacz A, Fulop K, Erdei L. Effects of excess UV-B irradiation on the antioxidant defence mechanisms in wheat (Triticum aestivum L.) seedlings. J. Plant Physiol. 153: 146-153 (1998)
  16. Shalata A, Mittova V, Volokita M, Guy M, Tal M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol. Plantarum 112: 487-494 (2001) https://doi.org/10.1034/j.1399-3054.2001.1120405.x
  17. Wildi B, Lutz C. Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ. 19: 138-146 (1996) https://doi.org/10.1111/j.1365-3040.1996.tb00235.x
  18. Valls V, Peiro C, Mu$\tilde{n}$iz P, Saez GT. Age-related changes in antioxidant status and oxidative damage to lipids and DNA in mitochondria of rat liver. Process Biochem. 40: 903-908 (2005) https://doi.org/10.1016/j.procbio.2004.02.025
  19. Castro B, Alonso-Varona A, del Olmo M, Bilbao P, Palomares T. Role of gamma-glutamyltranspeptidase on the response of poorly and moderately differentiated rhabdomyosarcoma cell lines to buthionine sulfoximine-induced inhibition of glutathione synthesis. Anti-cancer Drugs 13: 281-291 (2002) https://doi.org/10.1097/00001813-200203000-00010
  20. Tchaikovskaya T, Fraifeld V, Urphanishvili T, Andorfer JH, Davies P, Listowsky I. Glutathione S-transferase hGSTM3 and ageing-associated neurodegeneration: relationship to Alzheimer's disease. Mech. Ageing Dev. 126: 309-315 (2005) https://doi.org/10.1016/j.mad.2004.08.029
  21. Sugihara N, Tsuruta Y, Furuno K. Effect of potassium sorbate on cellular GSH level and lipid peroxidation in cultured rat hepatocytes. Biol. Pharm. Bull. 21: 524-526 (1998) https://doi.org/10.1248/bpb.21.524
  22. Steghens JP, Flourie F, Arab K, Collombel C. Fast liquid chromatography- mass spectrometry glutathione measurement in whole blood: Micromolar GSSG is a sample preparation artifact. J. Chromatogr. B 798: 343-349 (2003) https://doi.org/10.1016/j.jchromb.2003.10.007
  23. Flagg EW, Coates RJ, Eley JW, Jones DP, Gunter EW, Byers TE, Block GS, Greenberg RS. Dietary glutathione intake in humans and the relationship between intake and plasma total glutathione level. Nutr. Cancer 21: 33-46 (1994) https://doi.org/10.1080/01635589409514302
  24. Flagg EW, Coates RJ, Jones DP, Byers TE, Greenberg RS, Gridley G, McLaughlin JK, Blot WJ, Haber M, Preston-Martin S, Schoenberg JB, Austin DF, Fraumeni Jr. JF. Dietary glutathione intake and the risk of oral and pharyngeal cancer. Am. J. Epidemiol. 139: 453-465 (1994)
  25. Lenzi A, Culasso F, Gandini L, Lombardo F, Dondero F. Placebo- controlled, double-blind, cross-over trial of glutathione therapy in male infertility. Hum. Reprod. 8: 1657-1662 (1993)
  26. Lenzi A, Picardo M, Gandini L, Lombardo F, Terminali O, Passi S, Dondero F. Glutathione treatment of dyspermia: Effect on the lipoperoxidation process. Hum. Reprod. 9: 2044-2050 (1994)
  27. Ceriello A, Giugliano D, Quatraro A, Lefebvre PJ. Anti-oxidants show an anti-hypertensive effect in diabetic and hypertensive subjects. Clin. Sci. 81: 739-742 (1991)
  28. Gronwald JW, Fuerst EP, Eberlein CV, Egli MA. Effect of herbicide antidotes on glutathione concentration and glutathione Stransferase activity of sorghum shoots. Pestic. Biochem. Phys. 29: 66-76 (1987) https://doi.org/10.1016/0048-3575(87)90085-X
  29. Ellman GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70-77 (1959) https://doi.org/10.1016/0003-9861(59)90090-6
  30. Klapheck S. Homoglutathione: isolation, quantification and occurrence in legumes. Physiol. Plant. 74: 727-732 (1988) https://doi.org/10.1111/j.1399-3054.1988.tb02044.x
  31. Tausz M, Pilch B, Rennenberg H, Grill D, Herschbach C. Root uptake, transport, and metabolism of externally applied glutathione in Phaseolus vulgaris seedlings. J. Plant Physiol. 161: 347-349 (2004) https://doi.org/10.1078/0176-1617-00658
  32. Bergmann L, Rennenberg H. Glutathione metabolism in plants. pp. 109-123. In: Sulphur Nutrition and Sulphur Assimilation in Higher Plants: Regulatory and Environmental Aspects. De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE. (eds). SPB Academic Publishing, Hague, The Netherlands (1993)
  33. Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109: 1047-1057 (1995) https://doi.org/10.1104/pp.109.3.1047