• 제목/요약/키워드: GRT

검색결과 26건 처리시간 0.017초

병렬구조 TSK 퍼지 모델을 이용한 선박용 기름배출 감시장치의 실시간 기름농도 예측모델 (On-line Prediction Model of Oil Content in Oil Discharge Monitoring Equipment Using Parallel TSK Fuzzy Modeling)

  • 백경동;조재우;최문호;김성신
    • 제어로봇시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.12-17
    • /
    • 2010
  • The oil tanker ship over 150GRT must equip oil content meter which satisfy requirements of revised MARPOL 73/78. Online measurement of oil content in complex samples is required to have fast response, continuous measurement, and satisfaction of ${\pm}10ppm$ or ${\pm}10%$ error in this field. The research of this paper is to develop oil content measurement system using analysis of light transmission and scattering among turbidity measurement methods. Light transmission and scattering are analytical methods commonly used in instrumentation for online turbidity measurement of oil in water. Gasoline is experimented as a sample and the oil content approximately ranged from 14ppm to 600ppm. TSK Fuzzy Model may be suitable to associate variously derived spectral signals with specific content of oil having various interfering factors. Proposed Parallel TSK Fuzzy Model is reasonably used to classify oil content in comparison with other models. Those measurement methods would be effectively applied and commercialized to oil content meter that is key components of oil discharge monitoring control equipment.

광양항 항로 개선에 관한 Simulation 연구 (A Simulation Study on the Improvement of the Waterway of Kwangyang Harbour)

  • 홍종해;김환수
    • 한국항해학회지
    • /
    • 제18권2호
    • /
    • pp.1-18
    • /
    • 1994
  • Kwangyang harbour has been developed very rapidly and has 20 berths including 2 for 250,000DWT bulk carriers at the terminal of Kwangyang Steel Company only. In addition to this, the port is developing a container terminal with 10 berths for 50,000GRT container ships, the construction of which is scheduled to be finished in the year 2000. Because of these development, it has been pointed out that the existing waterways are not wide and safe enough for the new large ships to be catered for. This work, therefore, aimed to examine the naviga-tional safety of the waterways of Kwangyang Harbour, and to suggest how to improve the existing water-ways for the large ships to be introduced in the near future. In examining the safety of the existing and newly suggested waterways, waterway design simulation methodology has been applied. From this study, it has been suggested that the No.4 navigational channel has to be dredged to the depth of 22.5 meters and used as an entrance channel only, while the No.3 channel is used as an exit channel. Additionally, a new waterway has been recommended to be established over the Myodo Island for the container ships which will use the new terminal, the width of which has been recommended to be 400 meters with 440 meters from the bend area.

  • PDF

Ground-based model study for spaceflight experiments under microgravity environments on thermo-solutal convection during physical vapor transport of mercurous chloride

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • 한국결정성장학회지
    • /
    • 제17권6호
    • /
    • pp.256-263
    • /
    • 2007
  • For $P_B=50Torr,\;P_T=5401Torr,\;T_S=450^{\circ}C,\;{\Delta}T=20K$, Ar=5, Pr=3.34, Le=0.01, Pe=4.16, Cv=1.05, adiabatic and linear thermal profiles at walls, the intensity of solutal convection (solutal Grashof number $Grs=7.86{\times}10^6$) is greater than that of thermal convection (thermal Grashof number $Grt=4.83{\times}10^5$) by one order of magnitude, which is based on the solutally buoyancy-driven convection due to the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B (He). With increasing the partial pressure of component B from 20 up to 800 Torr, the rate is decreased exponentially. It is also interesting that as the partial pressure of component B is increased by a factor of 2, the rate is approximately reduced by a half. For systems under consideration, the rate increases linearly and directly with the dimensionless Peclet number which reflects the intensity of condensation and sublimation at the crystal and source region. The convective transport decreases with lower g level and is changed to the diffusive mode at $0.1g_0$. In other words, for regions in which the g level is $0.1g_0$ or less, the diffusion-driven convection results in a parabolic velocity profile and a recirculating cell is not likely to occur. Therefore a gravitational acceleration level of less than $0.1g_0$ can be adequate to ensure purely diffusive transport.

유조선 해철 작업과 해양오염 방지 대책 (Oil Tanker Scrap and Marine Pollution Prevention Measures)

  • 김광수;김정연
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2007년도 춘계학술발표회
    • /
    • pp.187-194
    • /
    • 2007
  • 선박 해철 폐기물을 적절히 통제하고 관리하기 위하여, 선박 해철 폐기물의 처리 및 관리에 관한 실태 및 동향을 알아보고, 해양오염 방지법을 보완하거나 개정할 사항을 검토하였다. 세계의 선박 해체량은 연간 약 2,200만 DWT으로서 대부분이 방글라데시, 중국, 인도, 파키스탄 등 4개국에서 이루어지고 있으며, 최근에는 터키, 필리핀, 인도네시아, 베트남 등이 선박해체시장에 참여하고 있다. 선박해체산업은 주로 선진국보다는 개도국 또는 후진국에서 더 활발히 이루어지고 있다. 국내의 폐기물의 수집 운반, 중간처리, 최종처리 업체들은 규모가 작아서 인명뿐만 아니라 시설도 선박을 해철하기에는 부적절하거나 열악한 부분이 많고, 환경을 고려하지 않고 폐기물 처리작업이 이루어질 가능성이 높았다. 전남과 제주 지역의 해철 선박은 1000톤 이하의 선박이 대부분을 차지했다. 따라서 선내 잔류유성혼합물을 가진 노후선 (유조선 등)을 해철 할 때에 그 해철 선박을 후진국이나 미개발국으로 이동하는 것을 금지하거나 제한하는 규정이 해양오염방지법에 포함될 필요가 있고, 선박 해철업체 및 해철 폐기물 수집 운반업체, 중간처리업체 및 최종처리업체의 인력 및 시설에 관한 기준을 해양오염방지법에 규정할 필요가 있다. 또 한 선박 해철 폐기물에 대한 생산자책임 재활용 제도나 개념을 해양오염방지법에 도입하는 것이 바람직하다.

  • PDF

충남 대천해수욕장과 서천군 마량리 지역에 분포된 남포층군 변성퇴적암층의 변성지구조 진화 (The Tectono-metamorphic Evolution of Metasedimentary Rocks of the Nampo Group Outcropped in the Area of the Daecheon Beach and Maryangri, Seocheon-gun, Chungcheongnam-do)

  • 송용선;최정윤;박계헌
    • 암석학회지
    • /
    • 제17권1호
    • /
    • pp.1-15
    • /
    • 2008
  • 충남 대천해수욕장부근과 서천군 마량리 인대에 변성역암, 변성사암, 천매암 등으로 구성된 변성퇴적 암층이 노출되어 있다. 원암의 구성으로 볼 때 남포층군 중의 조계리층에 대비되며, 대표적인 변성광물군은 흑운모-백운모-석영(${\pm}$사장석${\pm}$녹니석)과 흑운모-백운모-석류석-석영(${\pm}$사장석${\pm}$녹니석)으로 중압변성의 각섬암상중 석류석대에 속한다. 지질온도압력계에 의해 계산된 온도-압력조건은 $560{\sim}595^{\circ}C$$6.9{\sim}8.2\;kb$이다. 천매암에서 분리된 흑운모의 K-Ar 연대는 $143.2{\pm}3.6\;Ma$, $122.6{\pm}2.4\;Ma$$124.8{\pm}2.4\;Ma$인데 뒤의 두 연대는 후기에 열적교란을 받은 것으로 판단된다. 기 발표된 연대측정에 의하면 대동누층군의 생성시기는 $187{\sim}175\;Ma$로 (Han et al., 2006; Jeon et al., 2007) 이 연구의 결과들과 조합하여 대보조산운동기에 일어난 이 지역에서의 변성지구조적 진화과정을 유추하였다. 남포층군 퇴적 직후인 175 Ma 부근에 습곡작용과 중첩된 트러스트운동으로 지각의 두께증가가 시작되었고, 정점변성작용을 거친 후 지각확장에 따른 정단층운동으로 흑운모의 폐쇄온도까지 빠르게 삭박되면서 냉각되는 과정을 겪었다.

물류시스템 분석에 관한 연구 - 부산항을 중심으로 - (A Study on the Analysis of Container Physical Distribution System -Pusan Port Oriented-)

  • Park, C.H.;Lee, C.Y.
    • 한국항만학회지
    • /
    • 제5권2호
    • /
    • pp.19-37
    • /
    • 1991
  • This work aims to : establish a model of the container physical distribution system of Pusan port comprising 4 sub-systems of a navigational system, on-dock cargo handling/transfer/storage system, off-dock CY system and an in-land transport system : examine the system regarding the cargo handling capability of the port and analyse the cost of the physical distribution system. The overall findings are as follows : Firstly in the navigational system, average tonnage of the ships visiting the Busan container terminal was 33,055 GRT in 1990. The distribution of the arrival intervals of the ships' arriving at BCTOC was exponential distribution of $Y=e^{-x/5.52}$ with 95% confidence, whereas that of the ships service time was Erlangian distribution(K=4) with 95% confidence, Ships' arrival and service pattern at the terminal, therefore, was Poisson Input Erlangian Service, and ships' average waiting times was 28.55 hours In this case 8berths were required for the arriving ships to wait less than one hour. Secondly an annual container through put that can be handled by the 9cranes at the terminal was found to be 683,000 TEU in case ships waiting time is one hour and 806,000 TEU in case ships waiting is 2 hours in-port transfer capability was 913,000 TEU when berth occupancy rate(9) was 0.5. This means that there was heavy congestion in the port when considering the fact that a total amount of 1,300,000 TEU was handled in the terminal in 1990. Thirdly when the cost of port congestion was not considered optimum cargo volume to be handled by a ship at a time was 235.7 VAN. When the ships' waiting time was set at 1 hour, optimum annual cargo handling capacity at the terminal was calculated to be 386,070 VAN(609,990 TEU), whereas when the ships' waiting time was set at 2 hours, it was calculated to be 467,738 VAN(739,027 TEU). Fourthly, when the cost of port congestion was considered optimum cargo volume to be handled by a ship at a time was 314.5 VAN. When the ships' waiting time was set at I hour optimum annual cargo handling capacity at the terminal was calculated to be 388.416(613.697 TEU), whereas when the ships' waiting time was set 2 hours, it was calculated to be 462,381 VAN(730,562 TEU).

  • PDF