Browse > Article

The Tectono-metamorphic Evolution of Metasedimentary Rocks of the Nampo Group Outcropped in the Area of the Daecheon Beach and Maryangri, Seocheon-gun, Chungcheongnam-do  

Song, Yong-Sun (Department of Environmental Geosciences, Pukyong National University)
Choi, Jung-Youn (Department of Environmental Geosciences, Pukyong National University)
Park, Kye-Hun (Department of Environmental Geosciences, Pukyong National University)
Publication Information
The Journal of the Petrological Society of Korea / v.17, no.1, 2008 , pp. 1-15 More about this Journal
Abstract
The metasedimentary rocks of the Nampo Croup consisting of metaconglomerates, metasandstones, phyllites are exposed in the area of the Daechcon beach and Maryangri, Seocheon-gun. Their typical metamorphic assemblages of Bt-Mus-Grt-Qtz (${\pm}Pl{\pm}Chl$) and Bt-Mus-Qtz (${\pm}Pl{\pm}Chl$) indicate that they have been under intermediate P/T type metamorphism and were metamorphosed to garnet zone grade of amphibolite-facies during the Daebo Orogeny. Pressure-temperature conditions of peak metamorphism estimated from geothermobarometries are $560{\sim}595^{\circ}C$, $6.9{\sim}8.2\;kb$ respectively. The results of K-Ar biotite age determination are $143.2{\pm}3.6\;Ma$, $122.6{\pm}2.4\;Ma$ and $124.8{\pm}2.4\;Ma$ and the last two ages are considered as the results of later-stage thermal perturbation. On the bases of the formation age of Daedong Supergroup of $187{\sim}172\;Ma$ (Han et al., 2006; Jeon et al., 2007) combined with the results of this study, the hypothetical model of tectonometamorphic evolution of the study area during Daebo Orogeny is proposed. Crustal thickening resulted from folding and duplexing of thrusts in the area initiated at around 175 Ma just after sedimentation of Nampo Croup. And then rapid cooling by normal faulting due to crustal extention followed immediately after the peak metamorphism to the closure temperature of biotite.
Keywords
Nampo Group; Daedong Supergroup; Daebo Orogeny; Metasediments; Metamorphism; Tectono-metamorphic evolution; K-Ar biotite age;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 김정민, 2001, 한국기초과학지원연구원에 도입된 K-Ar 연 대 측정 시스템: 개요 및 성능. 암석학회지, 10, 172-178
2 민경덕, 엄정기, 김동욱, 최용훈, 이윤수, 1992, 충남탄전에 분포하는 대동누층군에 대한 고지자기학적 연구. 광산지질, 25, 87-96
3 이병주, 김동학, 최현일, 기원서, 박기화, 1996, 1/250,000 대전 지질 도폭 설명서. 과학기술처, 59 p
4 주승환, 1983, Rb-Sr법에 의한 한반도 경기육괴의 연대측 정에 관한 연구. 한양대학교 박사학위논문, 139 p
5 Cluzel, D. 1992, Formation and tectonic evolution of early Mesozoic intramontane basins in the Ogcheon belt (South Korea): a reappraisal of the Jurassic "Daebo orogeny." J. Southeast Asian Earth Sci., 7, 223-235   DOI   ScienceOn
6 Han, R., Ree, J-H., Cho, D.R., Kwon, S-T. and Armstrong, R., 2006, SHRIMP U-Pb zircon ages of pyroclastic rocks in the Bansong Group, Taebaeksan Basin, South Korea and their implication for the Mesozoic tectonics. Gondwana Research, 9, 106-117   DOI   ScienceOn
7 Hoisch T.D., 1990, Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contrib. to Mineral. Petrol., 104, 225-234   DOI
8 Holdaway, M. J., 2000, Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am. Mineral., 85, 881-892   DOI
9 Indares, A. and Martignole, J., 1985, Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite. Am. Mineral., 70, 272-278
10 Mezger, K, Hanson, G.N. and Bohlen, S.R., 1989, High precision U-Pb ages of Metamorphic rutile: Application to the cooling history of high-grade terraines. Earth Planet Sci. Letter, 96, 106-118   DOI   ScienceOn
11 김동숙, 1981, 충남탄전 충주부근의 지질. 지질학회지, 17, 161-164
12 에가와 코우스케와 이용일, 2006, 오천 지역과 오서산 지 역의 남포층군 층서: 부정합에 대한 조계리층 역암의 중 요성. 지질학회지, 42, 635-643
13 Berman, R.G., 1990, Mixing properties of Ca-Mg-Fe-Mn garnets. Am. Mineral., 75, 328-344
14 Spear F.S. and Kohn, M.J., 1999, GTB program manual: Program Thermobarometry. 42 p
15 Wu, C.M., Zhang, J. and Ren, L.D., 2004, Empirical Garnet- Biotite-Plagioclase-Quartz (GBPQ) Geobarometry in Medium- to High-Grade Metapelites. J. Petrol., 45, 1907-1921   DOI   ScienceOn
16 Ferry, J.M. and Spear, F.S., 1978, Experimental calibration of the partitioning of Fe and Mg between biotite and garnet, Contrib. Mineral. Petrol., 66, 88-97
17 Laberge, J.D. and Pattison, D.R.M., 2007, Geology of the western margin of the Grand Forks complex, southern British Columbia: high-grade Cretaceous metamorphism followed by early Tertiary extension on the Granby fault. Can. J. Earth Sci., 44, 199-228   DOI
18 Spear, F.S., 1993, Metamorphic Phase Equilibria and Pressure- Temperature-Time Paths. Min. Soc. Am. Monograph Series. Min. Soc. Am. Washington, D.C., 799 p
19 Lee, S.R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B. and Kim, J.C., 2003, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Res., 121, 25-34   DOI   ScienceOn
20 Gessmann, C.K., Spiering, B. and Raith, M., 1997, Experimental study of the Fe-Mg exchange between garnet and biotite: Constraints on the mixing behavior and analysis of the cation-exchange mechanisms. Am. Mineral., 82, 1225-1240   DOI
21 Hodges K.V. and Crowley P.D., 1985, Error estimation in empirical geothermometry and geobarometry for pelitic systems. Am. Min., 70, 702-709
22 서해길, 김동숙, 박석환, 임순복, 조민조, 배두종, 이창범, 이 돈영, 유형수, 박정서, 장윤환, 1980, 충남탄전(1), 성주지 역 석탄자원조사보고서, 2, 한국동력자원개발연구소, 42 p
23 Holdaway, M.J., Mukhopadhyay, B., Dyar, M.D., Guidotti, C.V. and Dutrow, B.L., 1997, Garnet-biotite geothermometry revised: New Margules parameters and a natural specimen data set from Maine. Am. Mineral., 82, 582-595   DOI
24 Ghent, E. D. and Stout, M. Z., 1981, Geobarometry and geothermometry of plagioclasebiotite-garnet-muscovite assemblages. Contrib. to Mineral. Petrol., 76, 92-97   DOI
25 Shimamura, S., 1931, Geological Atlas of Chosen. Cheongyang, Daecheonri, Buyeo and Nampo Sheets. Geol. Surv. Chosen
26 Perchuk, L.L. and Lavrent'eva, I.V., 1983, Experimental investigation of exchange equilibria in the system cordierite- garnet-biotite. in: Saxena, S.K. (ed.): Kinetics and Equilibrium in Mineral Reactions. Adv. Phys. Geochem., 3, 199-239, Springer, New York
27 Patino Douce, A. E., Johnston, A. D. and Rice, J. M., 1993, Octahedral excess mixing properties in biotite: a working model with applications to geobarometry and geother mometry. Am. Mineral., 78, 113-13
28 최현일, 김동숙, 서해길, 1987, 충남탄전 대동지층의 층서, 최적환경 및 분지발달. 한국동력자원연구소 연구보고서, KR-87-(B)-3, 97 p
29 Hoisch T.D., 1991, Equilibria within the mineral assemblage quartz +muscovite + biotite + garnet + plagioclase, and implications for the mixing properties of octahedrally-coordinated cations in muscovite and biotite. Contrib. to Mineral. Petrol., 108, 43-54   DOI
30 Cosca M.A., Sutter, J.F. and Essene, E.J., 1991, Cooling and inferred uplift/erosion history of the Grenville Orogen, Ontario: Constraints from Ar/Ar thermochronology. Tectonics, 10, 957-977
31 Spear, F. S. and Parrish, R., 1996, Petrology and cooling rates of the Valhalla Complex, British Columbia, Canada: J. Petrol., 37, 733-765   DOI   ScienceOn
32 Spear, F. S., 2004, Fast Cooling and Exhumation of the Valhalla Metamorphic Core Complex, Southeastern British Columbia. International Geol. Review, 46, 193-209   DOI   ScienceOn
33 Hodges, K. V. and Spear, F. S., 1982, Geothermometry, geobarometry and the $Al_2SiO_5 $ triple point at Mt. Moosilauke, New Hampshire. Am. Mineral., 67, 1118-1134
34 Kleemann U. and Reinhardt J., 1994, Garnet?biotite thermometry revised: the effect of AlVI and Ti in biotite. European J. Mineral., 6, 925-941   DOI
35 Powell, R. and Holland, T. J. B., 1988, An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J. Meta. Geol., 6, 173-204   DOI
36 김봉균, 손석진, 1963, 한국지질도 (1/50,000) 서천도폭 및 설명서. 한국지질조사소, 11 p
37 Ganguly, J. and Saxena, S. K., 1984, Mixing properties of aluminosilicate garnets: constraints from natural and experimental data, and applications to geothermobarometry. Am. Mineral., 69, 88-97
38 Harrison, T. M., Duncan, I. and McDougall, I., 1985, Diffusion of $^{40}Ar$ in biotite: temperature, pressure and compositional effects. Geoch. et Cosmochi. Acta, 50, 247-253
39 Parrish, R.R., Carr S.D., and Parkinson, D.L., 1988, Eocene extensional tectonics and geochronology of the southern Omineca belt, British Columbia and Washington. Tectonics, 7, 181-212   DOI
40 Vance, D. and O'Nions, R.K., 1990, Isotope geochronology of zoned garnets: growth kinetics and metamorphic histories. Earth Planet Sci. Letter, 97, 227-240   DOI   ScienceOn
41 Reedman, A.J. and Um, S.H., 1975, The geology of Korea. Geol. Miner. Inst. Korea, Seoul, 139 p
42 전희영 김동학, 엄상호, 봉필윤, 이호영, 최성자, 김복철, 권 영인, 이동영, 박영수, 최영섭, 1990, 한반도 진화생물에 의한 퇴적분지 연구(II). 과학기술처, 288 p
43 Jeon, H., Cho, M. Kim, H, Horie, K. and Hidaka. H., 2007, Early Archean to Middle Jurassic Evolution of the Korean Peninsula and Its Correlation with Chinese Cratons: SHRIMP U-Pb Zircon Age Constraints. J. Geol., 115, 525-539   DOI