The Tectono-metamorphic Evolution of Metasedimentary Rocks of the Nampo Group Outcropped in the Area of the Daecheon Beach and Maryangri, Seocheon-gun, Chungcheongnam-do

충남 대천해수욕장과 서천군 마량리 지역에 분포된 남포층군 변성퇴적암층의 변성지구조 진화

  • Song, Yong-Sun (Department of Environmental Geosciences, Pukyong National University) ;
  • Choi, Jung-Youn (Department of Environmental Geosciences, Pukyong National University) ;
  • Park, Kye-Hun (Department of Environmental Geosciences, Pukyong National University)
  • 송용선 (부경대학교 환경지질과학과) ;
  • 최정윤 (부경대학교 환경지질과학과) ;
  • 박계헌 (부경대학교 환경지질과학과)
  • Published : 2008.03.30

Abstract

The metasedimentary rocks of the Nampo Croup consisting of metaconglomerates, metasandstones, phyllites are exposed in the area of the Daechcon beach and Maryangri, Seocheon-gun. Their typical metamorphic assemblages of Bt-Mus-Grt-Qtz (${\pm}Pl{\pm}Chl$) and Bt-Mus-Qtz (${\pm}Pl{\pm}Chl$) indicate that they have been under intermediate P/T type metamorphism and were metamorphosed to garnet zone grade of amphibolite-facies during the Daebo Orogeny. Pressure-temperature conditions of peak metamorphism estimated from geothermobarometries are $560{\sim}595^{\circ}C$, $6.9{\sim}8.2\;kb$ respectively. The results of K-Ar biotite age determination are $143.2{\pm}3.6\;Ma$, $122.6{\pm}2.4\;Ma$ and $124.8{\pm}2.4\;Ma$ and the last two ages are considered as the results of later-stage thermal perturbation. On the bases of the formation age of Daedong Supergroup of $187{\sim}172\;Ma$ (Han et al., 2006; Jeon et al., 2007) combined with the results of this study, the hypothetical model of tectonometamorphic evolution of the study area during Daebo Orogeny is proposed. Crustal thickening resulted from folding and duplexing of thrusts in the area initiated at around 175 Ma just after sedimentation of Nampo Croup. And then rapid cooling by normal faulting due to crustal extention followed immediately after the peak metamorphism to the closure temperature of biotite.

충남 대천해수욕장부근과 서천군 마량리 인대에 변성역암, 변성사암, 천매암 등으로 구성된 변성퇴적 암층이 노출되어 있다. 원암의 구성으로 볼 때 남포층군 중의 조계리층에 대비되며, 대표적인 변성광물군은 흑운모-백운모-석영(${\pm}$사장석${\pm}$녹니석)과 흑운모-백운모-석류석-석영(${\pm}$사장석${\pm}$녹니석)으로 중압변성의 각섬암상중 석류석대에 속한다. 지질온도압력계에 의해 계산된 온도-압력조건은 $560{\sim}595^{\circ}C$$6.9{\sim}8.2\;kb$이다. 천매암에서 분리된 흑운모의 K-Ar 연대는 $143.2{\pm}3.6\;Ma$, $122.6{\pm}2.4\;Ma$$124.8{\pm}2.4\;Ma$인데 뒤의 두 연대는 후기에 열적교란을 받은 것으로 판단된다. 기 발표된 연대측정에 의하면 대동누층군의 생성시기는 $187{\sim}175\;Ma$로 (Han et al., 2006; Jeon et al., 2007) 이 연구의 결과들과 조합하여 대보조산운동기에 일어난 이 지역에서의 변성지구조적 진화과정을 유추하였다. 남포층군 퇴적 직후인 175 Ma 부근에 습곡작용과 중첩된 트러스트운동으로 지각의 두께증가가 시작되었고, 정점변성작용을 거친 후 지각확장에 따른 정단층운동으로 흑운모의 폐쇄온도까지 빠르게 삭박되면서 냉각되는 과정을 겪었다.

Keywords

References

  1. 김동숙, 1981, 충남탄전 충주부근의 지질. 지질학회지, 17, 161-164
  2. 김봉균, 손석진, 1963, 한국지질도 (1/50,000) 서천도폭 및 설명서. 한국지질조사소, 11 p
  3. 김정민, 2001, 한국기초과학지원연구원에 도입된 K-Ar 연 대 측정 시스템: 개요 및 성능. 암석학회지, 10, 172-178
  4. 민경덕, 엄정기, 김동욱, 최용훈, 이윤수, 1992, 충남탄전에 분포하는 대동누층군에 대한 고지자기학적 연구. 광산지질, 25, 87-96
  5. 서해길, 김동숙, 박석환, 임순복, 조민조, 배두종, 이창범, 이 돈영, 유형수, 박정서, 장윤환, 1980, 충남탄전(1), 성주지 역 석탄자원조사보고서, 2, 한국동력자원개발연구소, 42 p
  6. 에가와 코우스케와 이용일, 2006, 오천 지역과 오서산 지 역의 남포층군 층서: 부정합에 대한 조계리층 역암의 중 요성. 지질학회지, 42, 635-643
  7. 이병주, 김동학, 최현일, 기원서, 박기화, 1996, 1/250,000 대전 지질 도폭 설명서. 과학기술처, 59 p
  8. 전희영 김동학, 엄상호, 봉필윤, 이호영, 최성자, 김복철, 권 영인, 이동영, 박영수, 최영섭, 1990, 한반도 진화생물에 의한 퇴적분지 연구(II). 과학기술처, 288 p
  9. 주승환, 1983, Rb-Sr법에 의한 한반도 경기육괴의 연대측 정에 관한 연구. 한양대학교 박사학위논문, 139 p
  10. 최현일, 김동숙, 서해길, 1987, 충남탄전 대동지층의 층서, 최적환경 및 분지발달. 한국동력자원연구소 연구보고서, KR-87-(B)-3, 97 p
  11. Berman, R.G., 1990, Mixing properties of Ca-Mg-Fe-Mn garnets. Am. Mineral., 75, 328-344
  12. Cluzel, D. 1992, Formation and tectonic evolution of early Mesozoic intramontane basins in the Ogcheon belt (South Korea): a reappraisal of the Jurassic "Daebo orogeny." J. Southeast Asian Earth Sci., 7, 223-235 https://doi.org/10.1016/0743-9547(92)90002-S
  13. Cosca M.A., Sutter, J.F. and Essene, E.J., 1991, Cooling and inferred uplift/erosion history of the Grenville Orogen, Ontario: Constraints from Ar/Ar thermochronology. Tectonics, 10, 957-977
  14. Ferry, J.M. and Spear, F.S., 1978, Experimental calibration of the partitioning of Fe and Mg between biotite and garnet, Contrib. Mineral. Petrol., 66, 88-97
  15. Ganguly, J. and Saxena, S. K., 1984, Mixing properties of aluminosilicate garnets: constraints from natural and experimental data, and applications to geothermobarometry. Am. Mineral., 69, 88-97
  16. Gessmann, C.K., Spiering, B. and Raith, M., 1997, Experimental study of the Fe-Mg exchange between garnet and biotite: Constraints on the mixing behavior and analysis of the cation-exchange mechanisms. Am. Mineral., 82, 1225-1240 https://doi.org/10.2138/am-1997-11-1218
  17. Ghent, E. D. and Stout, M. Z., 1981, Geobarometry and geothermometry of plagioclasebiotite-garnet-muscovite assemblages. Contrib. to Mineral. Petrol., 76, 92-97 https://doi.org/10.1007/BF00373688
  18. Han, R., Ree, J-H., Cho, D.R., Kwon, S-T. and Armstrong, R., 2006, SHRIMP U-Pb zircon ages of pyroclastic rocks in the Bansong Group, Taebaeksan Basin, South Korea and their implication for the Mesozoic tectonics. Gondwana Research, 9, 106-117 https://doi.org/10.1016/j.gr.2005.06.006
  19. Harrison, T. M., Duncan, I. and McDougall, I., 1985, Diffusion of $^{40}Ar$ in biotite: temperature, pressure and compositional effects. Geoch. et Cosmochi. Acta, 50, 247-253
  20. Hodges, K. V. and Spear, F. S., 1982, Geothermometry, geobarometry and the $Al_2SiO_5 $ triple point at Mt. Moosilauke, New Hampshire. Am. Mineral., 67, 1118-1134
  21. Hodges K.V. and Crowley P.D., 1985, Error estimation in empirical geothermometry and geobarometry for pelitic systems. Am. Min., 70, 702-709
  22. Hoisch T.D., 1990, Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contrib. to Mineral. Petrol., 104, 225-234 https://doi.org/10.1007/BF00306445
  23. Hoisch T.D., 1991, Equilibria within the mineral assemblage quartz +muscovite + biotite + garnet + plagioclase, and implications for the mixing properties of octahedrally-coordinated cations in muscovite and biotite. Contrib. to Mineral. Petrol., 108, 43-54 https://doi.org/10.1007/BF00307325
  24. Holdaway, M. J., 2000, Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am. Mineral., 85, 881-892 https://doi.org/10.2138/am-2000-0701
  25. Holdaway, M.J., Mukhopadhyay, B., Dyar, M.D., Guidotti, C.V. and Dutrow, B.L., 1997, Garnet-biotite geothermometry revised: New Margules parameters and a natural specimen data set from Maine. Am. Mineral., 82, 582-595 https://doi.org/10.2138/am-1997-5-618
  26. Indares, A. and Martignole, J., 1985, Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite. Am. Mineral., 70, 272-278
  27. Jeon, H., Cho, M. Kim, H, Horie, K. and Hidaka. H., 2007, Early Archean to Middle Jurassic Evolution of the Korean Peninsula and Its Correlation with Chinese Cratons: SHRIMP U-Pb Zircon Age Constraints. J. Geol., 115, 525-539 https://doi.org/10.1086/519776
  28. Kleemann U. and Reinhardt J., 1994, Garnet?biotite thermometry revised: the effect of AlVI and Ti in biotite. European J. Mineral., 6, 925-941 https://doi.org/10.1127/ejm/6/6/0925
  29. Laberge, J.D. and Pattison, D.R.M., 2007, Geology of the western margin of the Grand Forks complex, southern British Columbia: high-grade Cretaceous metamorphism followed by early Tertiary extension on the Granby fault. Can. J. Earth Sci., 44, 199-228 https://doi.org/10.1139/E06-101
  30. Lee, S.R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B. and Kim, J.C., 2003, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Res., 121, 25-34 https://doi.org/10.1016/S0301-9268(02)00196-1
  31. Mezger, K, Hanson, G.N. and Bohlen, S.R., 1989, High precision U-Pb ages of Metamorphic rutile: Application to the cooling history of high-grade terraines. Earth Planet Sci. Letter, 96, 106-118 https://doi.org/10.1016/0012-821X(89)90126-X
  32. Parrish, R.R., Carr S.D., and Parkinson, D.L., 1988, Eocene extensional tectonics and geochronology of the southern Omineca belt, British Columbia and Washington. Tectonics, 7, 181-212 https://doi.org/10.1029/TC007i002p00181
  33. Patino Douce, A. E., Johnston, A. D. and Rice, J. M., 1993, Octahedral excess mixing properties in biotite: a working model with applications to geobarometry and geother mometry. Am. Mineral., 78, 113-13
  34. Perchuk, L.L. and Lavrent'eva, I.V., 1983, Experimental investigation of exchange equilibria in the system cordierite- garnet-biotite. in: Saxena, S.K. (ed.): Kinetics and Equilibrium in Mineral Reactions. Adv. Phys. Geochem., 3, 199-239, Springer, New York
  35. Powell, R. and Holland, T. J. B., 1988, An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J. Meta. Geol., 6, 173-204 https://doi.org/10.1111/j.1525-1314.1988.tb00415.x
  36. Reedman, A.J. and Um, S.H., 1975, The geology of Korea. Geol. Miner. Inst. Korea, Seoul, 139 p
  37. Shimamura, S., 1931, Geological Atlas of Chosen. Cheongyang, Daecheonri, Buyeo and Nampo Sheets. Geol. Surv. Chosen
  38. Spear, F.S., 1993, Metamorphic Phase Equilibria and Pressure- Temperature-Time Paths. Min. Soc. Am. Monograph Series. Min. Soc. Am. Washington, D.C., 799 p
  39. Spear, F. S., 2004, Fast Cooling and Exhumation of the Valhalla Metamorphic Core Complex, Southeastern British Columbia. International Geol. Review, 46, 193-209 https://doi.org/10.2747/0020-6814.46.3.193
  40. Spear F.S. and Kohn, M.J., 1999, GTB program manual: Program Thermobarometry. 42 p
  41. Spear, F. S. and Parrish, R., 1996, Petrology and cooling rates of the Valhalla Complex, British Columbia, Canada: J. Petrol., 37, 733-765 https://doi.org/10.1093/petrology/37.4.733
  42. Vance, D. and O'Nions, R.K., 1990, Isotope geochronology of zoned garnets: growth kinetics and metamorphic histories. Earth Planet Sci. Letter, 97, 227-240 https://doi.org/10.1016/0012-821X(90)90044-X
  43. Wu, C.M., Zhang, J. and Ren, L.D., 2004, Empirical Garnet- Biotite-Plagioclase-Quartz (GBPQ) Geobarometry in Medium- to High-Grade Metapelites. J. Petrol., 45, 1907-1921 https://doi.org/10.1093/petrology/egh038