• Title/Summary/Keyword: GROWTH-REGULATING FACTOR

Search Result 177, Processing Time 0.03 seconds

THE EFFECT OF FIBROBLAST GROWTH FACTOR SIGNALING ON CARTILAGE FORMATION (FGF signaling이 연골 형성에 미치는 영향)

  • Park, Choong-Je;Lee, Sang-Won;Nam, Soon-Hyun;Kim, Young-Jin;Ryoo, Hyhn-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.643-653
    • /
    • 2003
  • Fibroblast growth factor (FGF) / FGF receptor (FGFR) mediated signaling is required for skeletogenesis in cluding intramembranous and endochondral ossifications Runx2 ($Cbfa1/Pebp2{\alpha}A/AML3$) is an essential transcription factor for osteoblast differentiation and bone formation. Murine calvaria and mandible are concurrently undergoing both intramembranous bone and cartilage formations in the early developmental stage. However the mechanism by which these cartilage formations are regulated remains unclear. To elucidate the effect of FGF signaling on development of cranial sutural cartilage and Meckel's cartilage and to understand the role of Runx2 in these process, we have done both in vivo and in vitro experiments. Alcian blue staining showed that cartilage formation in sagittal suture begins from embryonic stage 16 (E16), Meckel's cartilage formation in mandible from E12. We analyzed by in situ hybridization the characteristics of cartilage cells that type II collagen, not type X collagen, was expressed in sagittal sutural cartilage and Meckel's cartilage. In addition, Runx2 was not expressed in Meckel's cartilage as well as sagittal sutural cartilage, except specific expression pattern only surrounding both cartilages. FGF signaling pathway was further examined in vitro. Beads soaked in FGF2 placed on the sagittal suture and mandible inhibited both sutural and Meckel's cartilage formations. We next examined whether Runx2 gene lies in FGF siganling pathway during regulation of cartilage formation. Beads soaked in FGF2 on sagittal suture induced Runx2 gene expression. These results suggest that FGF signaling inhibits formations of sagittal sutural and Meckel's cartilages, also propose that FGF siganling is involved in the proliferation and differentiation of chondroblasts through regulating the transcription factor Runx2.

  • PDF

Effects of Brassica rapa SHI-RELATED SEQUENCE overexpression on petunia growth and development (배추 SHI-RELATED SEQUENCE 유전자 발현이 페튜니아 생장 발달에 미치는 영향)

  • Hong, Joon Ki;Suh, Eun Jung;Lee, Su Young;Song, Cheon Young;Lee, Seung Bum;Kim, Jin A;Lee, Soo In;Lee, Yeon-Hee
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.204-214
    • /
    • 2015
  • SHI-RELATED SEQUENCE (SRS) genes are plant-specific transcription factors that contain a zinc-binding RING finger motif, which play a critical role in plant growth and development. Among Brassica rapa SRS genes, BrSRS7 and BrLRP1 genes, isolated from shoot apical regions are important regulators of plant growth and development. In order to explore the function of BrSRS genes in horticultural plant growth and development, two constructs containing BrSRS7 and BrLRP1 under the control of a cauliflower mosaic virus 35S promoter were introduced into petunia by Agrobacterium-mediated transformation. The resulting transgenic plants were dwarf and compact plants with reduced plant height and diameter. Additionally, these transgenic plants had upward-curled leaves of narrow width and short internodes. Interestingly, the flower shapes of petunia were different among transgenic plants harboring different kinds of SRS genes. These phenotypes were stably inherited through generations $T_2$ and $T_3$. Semi-quantitative RT-PCR analyses of transgenic plants revealed that BrSRS7 and BrLRP1 regulate expression of gibberellin (GA)- and auxinrelated genes, PtAGL15- and PtIAMT1-related, involved in shoot morphogenesis. These results indicate that the overexpression of BrSRS7 and BrLRP1 genes suppressed the growth and development of petunia by regulating expression of GA- and auxin-related genes. From these data, we deduce that BrSRS7 and BrLRP1 genes play an important role in the regulation of plant growth and development in petunia. These findings suggest that transformation with the BrSRS genes can be applied to other species as a tool for growth retardation and modification of plant forms.

Genetic Variations in the HIF1A Gene Modulate Response to Adjuvant Chemotherapy after Surgery in Patients with Colorectal Cancer

  • Zhang, Yi;Wang, Peng;Zhou, Xing-Chun;Bao, Guo-Qiang;Lyu, Zhuo-Ming;Liu, Xiao-Nan;Wan, Shao-Gui;He, Xian-Li;Huang, Qi-Chao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4637-4642
    • /
    • 2014
  • Background: Hypoxia-inducible factor $1{\alpha}$ (HIF-$1{\alpha}$) plays an important role in regulating cell survival and angiogenesis, which are critical for tumor growth and metastasis. Genetic variations of HIF1A have been shown to influence the susceptibility to many kinds of human tumors. Increased expression of HIF-$1{\alpha}$ has also been demonstrated to be involved in tumor progression. However, the prognostic value of single nucleotide polymorphisms (SNPs) inthe HIF1A gene remains to be determined in most cancer types, including colorectal cancer (CRC). In this study, we sought to investigate the predictive role of HIF1A SNPs in prognosis of CRC patients and efficacy of chemotherapy. Materials and Methods: We genotyped two functional SNPs in HIF1A gene using the Sequenom iPLEX genotyping system and then assessed their associations with clinicopathological parameters and clinical outcomes of 697 CRC patients receiving radical surgery using Cox logistic regression model and Kaplan Meier curves. Results: Generally, no significant association was found between these 2 SNPs and clinical outcomes of CRC. In stratified analysis of subgroup without adjuvant chemotherapy, patients carrying CT/TT genotypes of rs2057482 exhibited a borderline significant association with better overall survival when compared with those carrying CC genotype [Hazard ratio (HR), 0.47; 95% confidence interval (95% CI): 0.29-0.76; P < 0.01]. Moreover, significant protective effects on CRC outcomes conferred by adjuvant chemotherapy were exclusively observed in patients carrying CC genotype of rs2057482 and in those carrying AC/CC genotype of rs2301113. Conclusions: Genetic variations in HIF1A gene may modulate the efficacy of adjuvant chemotherapy after surgery in CRC patients.

Effects of Woo-Gui-Um on A${\beta}$ Toxicity and Memory Dysfunction in Mice

  • Hwang, Gwang-Ho;Kim, Bum-Hoi;Shin, Jung-Won;Shim, Eun-Sheb;Lee, Dong-Eun;Lee, Sang-Yul;Lee, Hyun-Sam;Jung, Hyuk-Sang;Sohn, Nak-Won;Sohn, Young-Joo
    • The Journal of Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.1-14
    • /
    • 2009
  • Objectives : Alzheimer's disease (AD) is characterized by neuronal loss and extracellular senile plaque. Moreover, the cellular actions of ${\beta}$-amyloid (A${\beta}$ play a causative role in the pathogenesis of AD. This study was designed to determine whether Woo-Gui-Um, a commonly used Korean herbal medicine, has the ability to protect cortical and hippocampal neurons against A${\beta}_{25-35}$ neurotoxicity Methods : In the present study, the authors investigated the preventative effects of the water extract of Woo-Gui-Um in a mouse model of AD. Memory impairment was induced by intraventricularly (i.c.v.) injecting A${\beta}_{25-35}$ peptides into mice. Woo-Gui-Um extract was then administered orally (p.o.) for 14 days. In addition, A${\beta}_{25-35}$ toxicity on the hippocampus was assessed immunohistochemically, by staining for Tau, MAP2, TUNEL, and Bax, and by performing an in vitro study in PC12 cells. Results : Woo-Gui-Um extract had an effect to improve learning ability and memory score in the water maze task. Woo-Gui-Um extract had significant neuroprotective effects in vivo against oxidative damage and apoptotic cell death of hippocampal neurons caused by i.c.v. A${\beta}_{25-35}$. In addition, Woo-Gui-Um extract was found to have a protective effect on A${\beta}_{25-35}$-induced apoptosis, and to promote neurite outgrowth of nerve growth factor (NGF)-differentiated PC12 cells. Conclusions : These results suggest that Woo-Gui-Um extract reduces memory impairment and Alzheimer's dementia via an anti-apoptotic effect and by regulating Tau and MAP2 in the hippocampus.

  • PDF

Transcriptome Analysis of Human HaCaT Keratinicytes by Ginsenosides Rb1 and Rg1 (진세노사이드 Rb1과 Rg1에 의한 HaCaT 피부각질세포의 전사체 분석)

  • Kim, Jung Min;Cho, Won June;Yoon, Hee Seung;Bang, In Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6774-6781
    • /
    • 2014
  • This study examined the efficacy and the mechanism of action of biological response modifiers, ginsenosides Rb1 and Rg1 isolated from Panax ginseng C.A. Meyer on human keratinocytes HaCaT cell lines. A non-significant cytotoxic response was obtained in the HaCaT cell lines on treatment with various concentrations of ginsenosides Rb1 and Rg1 for different time durations. Furthermore, the global changes in the mRNA profile of HaCaT cells were investigated using DNA microarrays after stimulation with the ginsenosides Rb1 and Rg1. Ginsenosides Rb1 and Rg1 strongly increased FGF2 in HaCaT cells, and were found to be a candidate gene for antioxidant activity and elasticity. Other key candidate genes for antioxidant activity, such as FANCD2, LEPR, and FAS, also show enhanced regulation in HaCaT cells treated with ginsenoside Rb1. This study will be useful for understanding the regulatory genes involved in skin elasticity and signal transduction pathway stimulated by the ginsenoside Rb1. This paper currently focuses on the key factors regulating the interaction of anti-aging principles and skin elasticity.

Study on the Lipolytic Function of GPR43 and Its Reduced Expression by DHA

  • Sun, Chao;Hou, Zengmiao;Wang, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.576-583
    • /
    • 2009
  • G protein-coupled receptor 43 (GPR43) is a newly-discovered short-chain free fatty acid receptor and its functions remain to be defined. The objective of this study was to investigate the function of GPR43 on lipolysis. We successfully cloned the GPR43 gene from the pig (EU122439), and measured the level of GPR43 mRNA in different tissues and primary pig adipocytes. The expression level of GPR43 mRNA was higher in adipose tissue and increased gradually with adipocyte differentiation. Then we examined GPR43 mRNA level in different types, growth-stages and various regions of adipose tissue of pigs. The results showed that the expression level of GPR43 mRNA was significantly higher in adipose tissue of obese pigs than in lean pigs, and the expression level also gradually increased as age increased. We further found that the abundance of GPR43 mRNA level increased more in subcutaneous fat than visceral fat. Thereafter, we studied the correlation between GPR43 and lipid metabolism-related genes in adipose tissue and primary pig adipocytes. GPR43 gene had significant negative correlation with hormone-sensitive lipase gene (HSL, r = -0.881, p<0.01) and triacylglycerol hydrolase gene (TGH, r = -0.848, p<0.01) in adipose tissue, and had positive correlation with peroxisome proliferator-activated receptor $\gamma$ gene ($PPAR_{\gamma}$, r = 0.809, p<0.01) and lipoprotein lipase gene (LPL, r = 0.847, p<0.01) in adipocytes. In addition, we fed different concentrations of docosahexaenoic acid (DHA) to mice, and analyzed expression level changes of GPR43, HSL and TGH in adipose. The results showed that DHA down-regulated GPR43 and up-regulated HSL and TGH mRNA levels; GPR43 also had significant negative correlation with HSL (low: r = -0.762, p<0.01; high: r = -0.838, p<0.01) and TGH (low: r = -0.736, p<0.01; high: r = -0.586, p<0.01). Our results suggested that GPR43 is a potential factor which regulates lipolysis in adipose tissue, and DHA as a receptor of GPR43 might promote lipolysis through down-regulating the expression of GPR43 mRNA.

The Effect of Trans-cinnamaldehyde on the Gene Expression of Lipopolysaccharide-stimulated BV-2 Cells Using Microarray Analysis (Trans-Cinnamaldehyde가 Lipopolysaccharide로 처리된 BV-2 cell에 미치는 항염증 기전 연구: Microarray 분석)

  • Sun, Young-Jae;Choi, Yeong-Gon;Jeong, Mi-Young;Hwang, Se-Hee;Lee, Je-Hyun;Cho, Jung-Hee;Lim, Sabina
    • The Journal of Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.13-27
    • /
    • 2009
  • Objectives: Trans-cinnamaldehyde (TCA) is the main component of Cinnamomi Ramulus and it has been reported that TCA inhibits inflammatory responses in various cell types. Inflammation-mediated neurological disorders induce the activation of macrophages such as microglia in brain, and these activated macrophages release various inflammation-related molecules, which can be neurotoxic if overproduced. In this study, we evaluated gene expression profiles using gene chip microarrays in lipopolysaccharide (LPS)-stimulated BV-2 cells to investigate the antiinflammatory effect of TCA on inflammatory responses in brain microglia. Methods: A negative control group was cultured in normal medium and a positive control group was stimulated with $1{\mu}g/ml$ in the absence of TCA. TCA group was pretreated with $10{\mu}g/ml$ before $1{\mu}g/ml$ LPS stimulation. The oligonucleotide microarray analysis was performed to obtain the expression profiles of 28,853 genes using gene chip mouse gene 1.0 ST array in this study. Results: In positive control group, 1522 probe sets were up-regulated in the condition of the cutoff value of 1.5-fold change and 341 genes with Unigene ID were retrieved. In TCA group, 590 probe sets were down-regulated from among 1522 probe sets and 33 genes with Unigene ID were retrieved, which included 6 inflammation-related genes. We found out that Id3 gene is associated with transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway and Klra8 gene is related to natural killer cell-mediated cytotoxicity pathway. Conclusions: The results mean that TCA inhibits inflammatory responses through down-regulating the expressions of inflammation-related genes in LPS-stimulated BV-2 cells.

  • PDF

Exendin-4 Improves Nonalcoholic Fatty Liver Disease by Regulating Glucose Transporter 4 Expression in ob/ob Mice

  • Kim, Seok;Jung, Jaehoon;Kim, Hwajin;Heo, Rok Won;Yi, Chin-Ok;Lee, Jung Eun;Jeon, Byeong Tak;Kim, Won-Ho;Hahm, Jong Ryeal;Roh, Gu Seob
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.333-339
    • /
    • 2014
  • Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been known to reverse hepatic steatosis in ob/ob mice. Although many studies have evaluated molecular targets of Ex-4, its mechanism of action on hepatic steatosis and fibrosis has not fully been determined. In the liver, glucose transporter 4 (GLUT4) is mainly expressed in hepatocytes, endothelial cells and hepatic stellate cells (HSCs). In the present study, the effects of Ex-4 on GLUT4 expression were determined in the liver of ob/ob mice. Ob/ob mice were treated with Ex-4 for 10 weeks. Serum metabolic parameters, hepatic triglyceride levels, and liver tissues were evaluated for hepatic steatosis. The weights of the whole body and liver in ob/ob mice were reduced by long-term Ex-4 treatment. Serum metabolic parameters, hepatic steatosis, and hepatic fibrosis in ob/ob mice were reduced by Ex-4. Particularly, Ex-4 improved hepatic steatosis by enhancing GLUT4 via GLP-1R activation in ob/ob mice. Ex-4 treatment also inhibited hepatic fibrosis by decreasing expression of connective tissue growth factor in HSCs of ob/ob mice. Our data suggest that GLP-1 agonists exert a protective effect on hepatic steatosis and fibrosis in obesity and type 2 diabetes.

Zearalenone exposure affects the Wnt/β-catenin signaling pathway and related genes of porcine endometrial epithelial cells in vitro

  • Song, Tingting;Yang, Weiren;Huang, Libo;Yang, Zaibin;Jiang, Shuzhen
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.993-1005
    • /
    • 2021
  • Objective: Zearalenone (ZEA) has estrogen-like effects. Our previous study has shown that ZEA (0.5 to 1.5 mg/kg) could induce abnormal uterine proliferation through transforming growth factor signaling pathway. To further study the other regulatory networks of uterine hypertrophy caused by ZEA, the potential mechanism of ZEA on porcine endometrial epithelial cells (PECs) was explored by the Illumina Hiseq 2000 sequencing system. Methods: The PECs were treated with ZEA at 0 (ZEA0), 5 (ZEA5), 20 (ZEA20), and 80 (ZEA80) µmol/L for 24 h. The collected cells were subjected to cell cycle, RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and western blot analysis. Results: The proportion of cells in the S and G2 phases decreased (p<0.05), but the proportion of cells in the G1 phase increased (p<0.05) in the ZEA80 treatment. Data analysis revealed that the expression of Wnt pathway-related genes, estrogen-related genes, and mitogen-activated protein kinase pathway-related genes increased (p<0.05), but the expression of genetic stability genes decreased (p<0.05) with increasing ZEA concentrations. The relative mRNA and protein expression of WNT1, β-catenin, glycogen synthase kinase 3β (GSK-3β) were increased (p<0.05) with ZEA increasing, while the relative mRNA and protein expression of cyclin D1 (CCND1) was decreased (p<0.05). Moreover, our immunofluorescence results indicate that β-catenin accumulated around the nucleus from the cell membrane and cytoplasm with increasing ZEA concentrations. Conclusion: In summary, ZEA can activate the Wnt/β-catenin signaling pathway by up-regulating WNT1 and β-catenin expression, to promote the proliferation and development of PECs. At the same time, the up-regulation of GSK-3β and down-regulation of CCND1, as well as the mRNA expression of other pathway related genes indicated that other potential effects of ZEA on the uterine development need further study.

Effect of Polygoni Multiflori Radix Water Extract on the Proinflammatory Mediators in RAW 264.7 Cells Induced by LPS (하수오(何首烏) 물추출물이 LPS로 유발된 RAW 264.7 Cells의 염증인자에 미치는 영향)

  • Jeong, Seong-Yong;Han, Hyo-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.101-109
    • /
    • 2013
  • Objectives : The purpose of this study was to investigate the effects of Polygoni Multiflori Radix Water Extract (PM) on the production of inflammatory mediators in RAW 264.7 mouse macrophages induced by lipopolysaccharide (LPS). Method : We examined effect of PM Extract on the cell viability of RAW 264.7 cells. Futhermore, we investigated anti-inflammatory effect of PM Extract by the production of proinflammatory cytokines such as NO, intracellular calcium, interleukin(IL)-$1{\alpha}$, IL-3, IL-$1{\beta}$, IL-6, interferon inducible protein-10(IP-10), keratinocyte-derived chemokine(KC) and vascular endothelial growth factor(VEGF). Result : No significant changes have been found in the mouse macrophge cell viability by the PM Extract at the concentration of 25, 50, 100 and $200{\mu}g/mL$. The water extract of PM significantly inhibited the production of NO and intracellular calcium in the LPS-induced macrophages at the concentration of 25, 50, 100 and $200{\mu}g/mL$. The water extract of PM significantly inhibited the production of IL-$1{\alpha}$, IL-${\beta}$, IL-3, IP-10, KC, VEGF in the LPS-induced macrophages at the concentration of 50, 100, and $200{\mu}g/mL$; IL-6 at the concentration of 100 and $200{\mu}g/mL$ ; and IL-17 at $200{\mu}g/mL$. Conclusion : The water extract of PM significantly inhibited the production of NO, intracellular calcium, IL-$1{\alpha}$, IL-3, IL-${\beta}$, IP-10, KC, VEGF at the concentration of 50 ㎍/mL or higher in the LPS-induced macrophages with no changes in the cell viability of them. These results suggest that water extract of Polygoni Multiflori Radix has anti-inflammatory effect regulating the production of proinflammatory cytokines in the LPS-induced macrophages.