• 제목/요약/키워드: GRID

검색결과 9,493건 처리시간 0.031초

Communication Architecture of the IEC 61850-based Micro Grid System

  • Yoo, Byong-Kwan;Yang, Seung-Ho;Yang, Hyo-Sik;Kim, Won-Yong;Jeong, Yu-Seok;Han, Byung-Moon;Jang, Kwang-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.605-612
    • /
    • 2011
  • As the power grids are integrated into one big umbrella called a "smart grid," communication protocol plays a key role in successful operations. The successful deployment of smart grid interoperability is a major hurdle that must be overcome. The micro grid, a small power system that distributes energy resource, is operated in diverse regions. Different vendors use different communication protocols in the operation of the micro grid. Recently, the IEC 61850 has been legislated to solve the interoperability problems in power utility automation. The present paper presents a micro grid system based on the IEC 61850 protocol. It consists of a micro grid monitoring system, a protocol converter that transforms serial data to IEC 61850 data, and distributed energy resource controllers for diverse DER nodes. A developed communication gateway can be deployed for DER controllers with serial links to exchange data with IEC 61850-based devices. The gateway can be extended to IEC 61850-based distribution automation systems, substation automation systems, or SCADA.

Virtual Flux and Positive-Sequence Power Based Control of Grid-Interfaced Converters Against Unbalanced and Distorted Grid Conditions

  • Tao, Yukun;Tang, Wenhu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1265-1274
    • /
    • 2018
  • This paper proposes a virtual flux (VF) and positive-sequence power based control strategy to improve the performance of grid-interfaced three-phase voltage source converters against unbalanced and distorted grid conditions. By using a second-order generalized integrator (SOGI) based VF observer, the proposed strategy achieves an AC voltage sensorless and grid frequency adaptive control. Aiming to realize a balanced sinusoidal line current operation, the fundamental positive-sequence component based instantaneous power is utilized as the control variable. Moreover, the fundamental negative-sequence VF feedforward and the harmonic attenuation ability of a sequence component generator are employed to further enhance the unbalance regulation ability and the harmonic tolerance of line currents, respectively. Finally, the proposed scheme is completed by combining the foregoing two elements with a predictive direct power control (PDPC). In order to verify the feasibility and validity of the proposed SOGI-VFPDPC, the scenarios of unbalanced voltage dip, higher harmonic distortion and grid frequency deviation are investigated in simulation and experimental studies. The corresponding results demonstrate that the proposed strategy ensures a balanced sinusoidal line current operation with excellent steady-state and transient behaviors under general grid conditions.

그리드 환경에서 워크플로우의 서비스 매핑을 위한 메타 서비스 (Meta Service: Mapping of a Service Request to a Workflow in Grid Environments)

  • 이상근;최재영;황석찬
    • 정보처리학회논문지A
    • /
    • 제12A권4호
    • /
    • pp.289-296
    • /
    • 2005
  • 그리드 환경에서 수행되는 작업 중 많은 작업들은 연관된 작업들이 서로 결합된 워크플로우의 형태로 수행된다. 이러한 워크플로우를 서비스로 추상화한다면 사용자는 보다 손쉽게 워크플로우로 구성된 작업을 수행할 수 있다. 본 논문에서는 워크플로우를 서비스로 매핑하기 위한 메타 서비스를 정의하였다. 이 메타 서비스를 사용하면 워크플로우를 포탈 서비스, 그리드 서비스, 웹 서비스 등으로 쉽게 변환할 수 있다. 또한 워크플로우 사용자들 간에 워크플로우를 서비스의 형태로 공유하는 것도 역시 가능해진다. 마지막으로 과거의 성능 데이터 등의 서비스를 효율적으로 수행할 수 있는 정보들을 제공하여 QoS를 향상시킬 수 있다.

Energy Management of a Grid-connected High Power Energy Recovery Battery Testing System

  • Zhang, Ke;Long, Bo;Yoo, Cheol-Jung;Noh, Hye-Min;Chang, Young-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.839-847
    • /
    • 2016
  • Energy recovery battery testing systems (ERBTS) have been widely used in battery manufactures. All the ERBTS are connected in parallel which forms a special and complicated micro-grid system, which has the shortcomings of low energy recovery efficiency, complex grid-connected control algorithms issues for islanded detection, and complicated power circuit topology issues. To solve those shortcomings, a DC micro-grid system is proposed, the released testing energy has the priority to be reutilized between various testing system within the local grid, Compared to conventional scheme, the proposed system has the merits of a simplified power circuit topology, no needs for synchronous control, and much higher testing efficiency. The testing energy can be cycle-used inside the local micro-grid. The additional energy can be recovered to AC-grid. Numerous experimental comparison results between conventional and proposed scheme are provided to demonstrate the validity and effectiveness of the proposed technique.

Current Harmonics Rejection and Improvement of Inverter-Side Current Control for the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1672-1682
    • /
    • 2017
  • For grid-connected LCL-filtered inverters, the inverter-side current can be used as the control object with one current sensor for both LCL resonance damping and over-current protection, while the grid-voltage feedforward or harmonic resonant compensator is used for suppressing low-order grid current harmonics. However, it was found that the grid current harmonics were high and often beyond the standard limitations with this control. The limitations of the inverter-side current control in suppressing low-order grid current harmonics are analyzed through inverter output impedance modeling. No matter which compensator is used, the maximum magnitudes of the inverter output impedance at lower frequencies are closely related to the LCL parameters and are decreased by increasing the control delay. Then, to improve the grid current quality without complicating the control or design, this study proposes designing the filter capacitance considering the current harmonic constraint and using a PWM mode with a short control delay. Test results have confirmed the limitation and verified the performance of the improved approaches.

Numerical Simulation of Wind Pressures on a High-rise Building by Auto-mesh System

  • Tang, Yuanzhe;Cao, Shuyang
    • 국제초고층학회논문집
    • /
    • 제8권4호
    • /
    • pp.255-264
    • /
    • 2019
  • This paper describes large eddy simulation of wind pressures on a square cylinder in a uniform flow and a high-rise building immersed in an atmospheric turbulent boundary layer. For the atmospheric boundary layer case, the inflow turbulence is generated by a numerical wind tunnel. In the numerical simulation, particular attention is devoted to the performance of an auto hexahedral non-structural mesh. Both simulations are performed for three grid systems: an auto hexahedral non-structured grid, a structured Cartesian grid and a non-structured triangular prism grid, and for three grid numbers. The present study shows that the auto hexahedral unstructured mesh achieves the best simulation results for wind pressures on the square cylinder and the high-rise building. When the grid number is sufficiently large, the differences among the results obtained from the three investigated grid systems are not significant. However, the advantage of the auto hexahedral unstructured mesh becomes clear when the grid number decreases, because it enables a balanced distribution of orthogonal grids. The results described in this paper demonstrate that the auto hexahedral non-structured mesh has good potential applicability to simulation of urban flows.

An Optimization Method for the Calculation of SCADA Main Grid's Theoretical Line Loss Based on DBSCAN

  • Cao, Hongyi;Ren, Qiaomu;Zou, Xiuguo;Zhang, Shuaitang;Qian, Yan
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1156-1170
    • /
    • 2019
  • In recent years, the problem of data drifted of the smart grid due to manual operation has been widely studied by researchers in the related domain areas. It has become an important research topic to effectively and reliably find the reasonable data needed in the Supervisory Control and Data Acquisition (SCADA) system has become an important research topic. This paper analyzes the data composition of the smart grid, and explains the power model in two smart grid applications, followed by an analysis on the application of each parameter in density-based spatial clustering of applications with noise (DBSCAN) algorithm. Then a comparison is carried out for the processing effects of the boxplot method, probability weight analysis method and DBSCAN clustering algorithm on the big data driven power grid. According to the comparison results, the performance of the DBSCAN algorithm outperforming other methods in processing effect. The experimental verification shows that the DBSCAN clustering algorithm can effectively screen the power grid data, thereby significantly improving the accuracy and reliability of the calculation result of the main grid's theoretical line loss.

단상 계통연계 인버터를 위한 개선된 고조파 보상법 (An Improved Harmonic Compensation Method for a Single-Phase Grid Connected Inverter)

  • 칸 레이안;최우진
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.215-227
    • /
    • 2019
  • Grid-connected inverters should satisfy a certain level of total harmonic distortion (THD) to meet harmonics standards, such as IEEE 519 and P1547. The output quality of an inverter is typically degraded due to grid voltage harmonics, dead time effects, and the device's turn-on/turn-off delay, which all contribute to increasing the THD value of the output. The use of a harmonic controller is essential to meet the required THD value for inverter output under a distorted grid condition. In this study, an improved feedforward harmonic compensation method is proposed to effectively eliminate low-order harmonics in the inverter current to the grid. In the proposed method, harmonic components are directly compensated through feedforward terms generated by the proportional resonant controller with the grid current in a stationary frame. The proposed method is simple to implement but powerful in eliminating harmonics from the output. The effectiveness of the proposed method is verified through simulation using PSIM software and experiments with a 5 kW single-phase grid-connected inverter.

전력기기 특성 및 가동 지연 불편도를 고려한 실시간 급작 수요 협상 프레임웍 기반 스마트 그리드 시스템 (Real Time Sudden Demand Negotiation Framework based Smart Grid System considering Characteristics of Electric device type and Customer' Delay Discomfort)

  • 유대선;이현수
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.405-415
    • /
    • 2019
  • The considerations of the electrical device' characteristics and the customers' satisfaction have been important criteria for efficient smart grid systems. In general, an electrical device is classified into a non-interruptible device or an interruptible device. The consideration of the type is an essential information for the efficient smart grid scheduling. In addition, customers' scheduling preferences or satisfactions have to be considered simultaneously. However, the existing research studies failed to consider both criteria. This paper proposes a new and efficient smart grid scheduling framework considering both criteria. The framework consists of two modules - 1) A day-head smart grid scheduling algorithm and 2) Real-time sudden demand negotiation framework. The first method generates the smart grid schedule efficiently using an embedded genetic algorithm with the consideration of the device's characteristics. Then, in case of sudden electrical demands, the second method generates the more efficient real-time smart grid schedules considering both criteria. In order to show the effectiveness of the proposed framework, comparisons with the existing relevant research studies are provided under various electricity demand scenarios.

지표격자해상도 및 우수관망 간소화 수준에 따른 도시홍수 예측 성능검토 (Performance Analysis of Grid Resolution and Storm Sewage Network for Urban Flood Forecasting)

  • 심상보;김형준
    • 한국안전학회지
    • /
    • 제39권1호
    • /
    • pp.70-81
    • /
    • 2024
  • With heavy rainfall due to extreme weather causing increasing damage, the importance of urban flood forecasting continues to grow. To forecast urban flooding accurately and promptly, a sewer network and surface grid with appropriate detail are necessary. However, for urban areas with complex storm sewer networks and terrain structures, high-resolution grids and detailed networks can significantly prolong the analysis. Therefore, determining an appropriate level of network simplification and a suitable surface grid resolution is essential to secure the golden time for urban flood forecasting. In this study, InfoWorks ICM, a software program capable of 1D-2D coupled simulation, was used to examine urban flood forecasting performance for storm sewer networks with various levels of simplification and different surface grid resolutions. The inundation depth, inundation area, and simulation time were analyzed for each simplification level. Based on the analysis, the simulation time was reduced by up to 65% upon simplifying the storm sewer networks and by up to 96% depending on the surface grid resolution; further, the inundation area was overestimated as the grid resolution increased. This study provides insights into optimizing the simplification level and surface grid resolution for storm sewer networks to ensure efficient and accurate urban flood forecasting.