• 제목/요약/키워드: GREEN ROOF

검색결과 273건 처리시간 0.034초

Building Integrated Vegetation Systems into the New Sainsbury's Building Based on BIM

  • Lee, Dong-Kyu
    • 한국BIM학회 논문집
    • /
    • 제4권2호
    • /
    • pp.25-32
    • /
    • 2014
  • Today, there is a growing need of environment-friendly buildings, so-called 'green', facilities, and energy saving buildings to decrease environmental pollutants released into cities by construction activities. Green-Building Information Modeling (Green-BIM) is a purpose-built solution which supports to forecast energy consumption of 3-D model of a building by augmenting its primary 3-D measurements (width, height and depth) with many more dimensions (e.g. time, costs, social impacts and environmental consequences) throughout a series of sequential phases in the lifecycle of a building. The current study was carried out in order to integrate vegetation systems (particularly green roof and green wall systems) and investigate thermal performance of the new Sainsbury's building which will be built on Melton road, Leicester, United Kingdom. Within this scope, a 3-D building model of the news Sainsbury's building was first developed in $Autodesk^{(R)}$ $Revit^{(R)}$ and this model was then simulated in $Autodesk^{(R)}$ $Ecotect^{(R)}$once weather data of the construction site was obtained from $Autodesk^{(R)}$ Green Building $Studio^{(R)}$. This study primarily analyzed data from (1) solar radiation, (2) heat gains and losses, and (3) heating and cooling loads simulation to evaluate thermal performance of the building integrated with vegetation system or conventionally available envelops. The results showed that building integrated vegetation system can potentially reduce internal solar gains on the building rooftops by creating a 'bioshade'. Heat gains and losses through roofs and walls were markedly diminished by offering greater insulation on the building. Annual energy loads for heating and cooling were significantly reduced by vegetation more significantly through the green roof system in comparison to green wall system.

영산홍을 이용한 저관리 옥상녹화 시스템의 식물생육 및 토양특성 평가 (Assessment of Plant Growth and Soil Properties of Extensive Green Roof System for Rhododendron indicum Sweet)

  • 김인혜;허근영;신현철;박남창
    • 원예과학기술지
    • /
    • 제28권6호
    • /
    • pp.1057-1065
    • /
    • 2010
  • 최근 도시의 환경문제로 인하여 옥상녹화에 많은 관심이 집중되고 있다. 옥상녹화 기술의 핵심은 식물의 생육을 건전하게 유지하는 동시에 건축물에 미치는 하중을 최소화할 수 있는 토양층을 조성하는 것이다. 본 연구는 옥상 환경에서 관목류의 생육을 건전하게 유지하면서 하중을 최소화할 수 있는 최적의 저관리 녹화 시스템을 구명하기 위한 연구의 일환으로서 상록관목인 영산홍을 식물재료로 선정하고 펄라이트를 주재료로 한 토심 30cm, 45cm, 60cm의 인공토양층을 건축물 옥상에 조성한 후, 2001년부터 2008년까지 식물 생육, 토양의 물리적 화학적 특성 변화, 건축물에 미치는 하중에 대한 평가를 수행하였다. RS-A-45와 RS-A-60에서는 실험 기간 동안 100%의 식물 생존율을 나타냈고 RS-A-30과 RS-B-60에서는 2008년에 각각 33%와 67%의 식물 생존율을 나타냈다. RS-A-45에서는 지속적으로 가장 높은 생육량이 나타났고 토양의 물리적 화학적 특성도 가장 우수하게 나타났다. 조성 후 8년이 경과한 시점에서 식물체를 포함한 포장용수 시 RS-A-45의 총중량은 $376.6kg{\cdot}m^{-2}$으로 옥상 녹화 허용 적재하중인 $500kg{\cdot}m^{-2}$보다 상당히 낮아 하중 측면에서도 적합한 것으로 평가되었다.

학교건축의 친환경적 계획수법에 대한 사례연구 - 미국, 일본, 한국의 학교건축을 중심으로 - (A Study on Examples of Eco-Friendly School Design - Focusing on School Facilities in USA, Japan and Korea -)

  • 이지영;이경선
    • 교육시설 논문지
    • /
    • 제18권2호
    • /
    • pp.3-14
    • /
    • 2011
  • This study aims to identify differences and lessons in eco-school planning techniques and sustainable design methods by analyzing comparatively green building certification system and the cases of sustainable schools in US, Korea and Japan. As a result of the comparative analysis, green building certification system for school facilities, both domestic and international, is categorized into external environment, energy, materials and resources, and indoor environment. From the case study, it is common that roof garden and biotopes are installed for external environment, while energy saving, passive energy utilization methods for natural lighting and ventilation such as arrangement planning, courtyard, top-light, shading devices, solar panel and insulation by roof garden are most frequently used. Also, storm water uses, water saving equipment and sustainable materials are often introduced for resource savings. Concerns for indoor environment is frequently addressed by introducing natural light and ventilation in the buildings, which makes ultimately a comfortable space.

  • PDF

옥상녹화시스템의 기온조절효과와 태양광발전효율간의 상호연관성 규명을 위한 전산해석연구 (A Study on Computer Simulation to Investigate Correlations between Temperature Controlling Effect of Green Roof System and the Photovoltaic Power Generation Efficiency)

  • 김태한;박성은
    • 한국태양에너지학회 논문집
    • /
    • 제33권4호
    • /
    • pp.70-79
    • /
    • 2013
  • These day cities experience serious climatic changes due to environmental load caused by disturbance in the circulation systems of water resources and energy. As technological improvement to respond to various climatic changes and disasters are also requested in the field of construction, inter-disciplinary studies linked to the establishment of sustainable environmental control and energy systems is required in a consilient perspective. This study aims to infer correlations in the impact of environmental changes caused by rooftop greening system on the photovoltaic power generation efficiency through computer simulation in an integrated perspective. By doing so, it seeks to provide basic study for developing a photovoltaic system integrated with building revegetation that is sustainable in environmental and resource aspects. A simulation showed that, in the case of sunshine hours in June, the green surface indicated temperature lowering effects of $9.19^{\circ}C$ on average compared to the non-green surface and temperature was $9.81^{\circ}C$ lower. Due to such greening effects, at the highest sunlight timepoint in June, Pmpp improved 119W and heat loss rate dropped 7.8%.

조방형 옥상녹화에서 노랑조팝나무의 활착에 미치는 토심별 유기질 토양개량제의 시용 효과 (Effect of Organic Fertilizer Application depends on Soil Depths on the Growth of Spiraea bumalda 'Gold Mound' in a Extensive Green Roof System)

  • 주진희;구은평;윤용한
    • 한국환경과학회지
    • /
    • 제23권2호
    • /
    • pp.239-248
    • /
    • 2014
  • This study investigated the effects of soil depths and soil organic fertilizer application on the growth characteristics of Spiraea bumalda 'Gold Mound' in a extensive green roof system. The treatments were 3 soil depths (10, 15 and 25 cm) and 5 soil types in mixture of artificial soil and organic fertilizer. We measured plant height, leaf width, leaf length, number of flowers, visual quality and survival rate from March to October in 2011. The growing medium of 10 cm soil depth showed the highest plant growth in $A_1$ (amended soil 100%), and the lowest plant growth in $O_1A_4$ (organic fertilizer 20% + amended soil 80%) treatment. In case of 15 cm soil depth, Spiraea bumalda 'Gold Mound' showed a high leaf length and visual quality in $O_1A_2$(organic fertilizer 33% + amended soil 67%) treatment and high leaf width and number of flowers in $O_1$ (organic fertilizer 100%) treatment. $A_1$ treatment without organic fertilizer showed the lowest leaf length and poorest visual quality, and $O_1A_4$ treatment showed the lowest plant height and lowest number of flowers. At soil depth 25 cm, $O_1A_1$ (organic fertilizer 50% + amended soil 50%) treatment showed greater plant height, visual quality and number of flowers than other treatments. The leaf length and leaf width were more effective in $O_1$ treatment. $A_1$ treatment showed a relatively low leaf length, leaf width and visual quality. The higher the organic conditioner, the better the plant growth. And, survival rates of Spiraea bumalda 'Gold Mound' showed 92%, 88% and 76% at soil depths of 25 cm, 15 cm and 10 cm, respectively, in this a extensive green roof system. Therefore, the results showed that the growth of Spiraea bumalda 'Gold Mound' was affected by both soil quality and soil depth. Different optimal mixtures of organic fertilizer and amended soil were determined, depending upon soil depth.

제2차 신재생 기본계획과 태양열 보급목표 - 태양열 100만 호 달성 과연 가능한가 - (Solar Thermal Deployment During the 2nd Basic Renewable Period - The Prospect of Million Solar Roof Program : 2003-2012 in Korea -)

  • 김종선;박근성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.168-171
    • /
    • 2006
  • The Korean Solar Thermal Industry hopes to realize 1 Million Solar Thermal Roofs. According to the 2nd Renewable Basic Plan : 2003-2012 the Government showed a very aggressive Solar Thermal Deployment Plan including Solar Thermal Apartment Housings Program. Owing to the Vision Statement such as Million Solar Thermal Roofs Program Korean Solar thermal Industry also can bring another shinny days Especially the more solar thermal applications such as to the Apartment Housings and Green Villages could bring a sustainable Solar Society Korea The RPA Program by the 9 Major Non-Private Energy Corporal ions and the RPS Program for the Solar Thermal Energy shall be another useful policy for the realization of Million Solar Korea era.

  • PDF

옥상녹화에 따른 콘크리트 건축물의 열환경 개선효과 -일사차폐블록과 잔디를 대상으로- (Study on Improvement of Thermal Environment by Green Roof Systems on RC Building - utilization of solar insulating block and the grass -)

  • 박찬필;후루가와 노부히사
    • 한국환경복원기술학회지
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 2004
  • Caused on the excessive heat accumulation of concrete material, the indoor thermal environment of reinforced concrete building is so bad in Okinawa. As the interruption of solar radiation could be one of the methods to improve it, the purpose of this study is to find out the effect of adopting solar radiation interrupting materials -Solar insulating block, Grass, and both of them- for the improvement of thermal environment. As the result, it was found that grass on the solar insulating block which has an air layer obviously improved the indoor thermal environment of RC building which was applied to. And it was found that the systems have an effectuality on heat island phenomenon simultaneously. It could be proposed as a good system which improve the indoor thermal environment of the existent houses.

인공지반녹화용 방근 설계 및 품질 향상을 위한 가이드라인 및 기준 고찰 (Literature Review of Construction Guide and Design Standard for Root Barrier Design of Green Roof System)

  • 서정일;김영삼;신홍철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.239-240
    • /
    • 2019
  • The existing evaluation of root barrier resistance takes at least two years as an evaluation based on plant growth, and it is difficult to determine early performance in the process of quality control in the field. In this study, thus, the direction of the root barrier resistance evaluation system was presented by considering the construction specifications and design standards for root barrier design. As a result, it was necessary to establish a test method for reproducing simple and consistent test results for evaluating the durability of root barrier materials.

  • PDF

옥상녹화를 위한 방수재료 및 공법개발의 필요성에 관한 분석 (The Necessity Analysis of Development Waterproofing Materials and Methods of Construction Technologies for Green Roof)

  • 권시원;오미현;강효진;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.107-111
    • /
    • 2003
  • The need for this study must be considerable, as being activate of green roofs research that the organization and construction obtain access to more development technologies. Nevertheless, the green roofs system has begun to apply since 1980's, the green roofs technology was restricted to develop without verification of technologies such as a load or water leakage. There is a limit as urethane waterproofing to almost domestic waterproofing materials and methods of construction for general green roofs. The introduction of materials and methods of construction which are appropriated to property of green roofs could be a decisive factor in a long-range durability and economical maintenance cost, moreover. it support to variety construction system and organization. This present paper describes a necessity of waterproofing and root barrier system is one of the sub-organization based on green roofs construction. which have enormously large impact on the durability.

  • PDF